[导读]Learning from Imbalanced Classes

原文:Learning from Imbalanced Classes

数据不平衡是一个非常经典的问题,数据挖掘、计算广告、NLP等工作经常遇到。该文总结了可能有效的方法,值得参考:

  • Do nothing. Sometimes you get lucky and nothing needs to be done. You can train on the so-called natural (or stratified) distribution and sometimes it works without need for modification.
  • Balance the training set in some way:
    • Oversample the minority class.
    • Undersample the majority class.
    • Synthesize new minority classes.
  • Throw away minority examples and switch to an anomaly detection framework.
  • At the algorithm level, or after it:
    • Adjust the class weight (misclassification costs).
    • Adjust the decision threshold.
    • Modify an existing algorithm to be more sensitive to rare classes.
  • Construct an entirely new algorithm to perform well on imbalanced data.
时间: 2024-11-10 14:31:44

[导读]Learning from Imbalanced Classes的相关文章

(转) Learning from Imbalanced Classes

Learning from Imbalanced Classes AUGUST 25TH, 2016 If you’re fresh from a machine learning course, chances are most of the datasets you used were fairly easy. Among other things, when you built classifiers, the example classes werebalanced, meaning t

(转)8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset

8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset by Jason Brownlee on August 19, 2015 in Machine Learning Process Has this happened to you? You are working on your dataset. You create a classification model and get 90% accuracy

【深度学习Deep Learning】资料大全

转载:http://www.cnblogs.com/charlotte77/p/5485438.html 最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books Deep Learning66 by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by

Best Resources for Imbalanced Classification

Best Resources for Imbalanced Classification 2019-12-26 08:47:39 Source: https://machinelearningmastery.com/resources-for-imbalanced-classification/ Classification is a predictive modeling problem that involves predicting a class label for a given ex

ICLR 2016 - Workshop Track International Conference on Learning Representations 论文papers

ICLR 2016 - Workshop Track International Conference on Learning Representations May 2 - 4, 2016, Caribe Hilton, San Juan, Puerto Rico Please see the venue website (http://www.iclr.cc/doku.php?id=iclr2016:main) for more information. Submission deadlin

分类问题中的数据不平衡问题

http://blog.csdn.net/heyongluoyao8/article/details/49408131 http://blog.csdn.net/lxg0807/article/details/71440477 ??在很多机器学习任务中,训练集中可能会存在某个或某些类别下的样本数远大于另一些类别下的样本数目.即类别不平衡,为了使得学习达到更好的效果,因此需要解决该类别不平衡问题. Jason Brownlee的回答: 原文标题:8 Tactics to Combat Imbala

[转]如何处理机器学习中的不平衡类别

如何处理机器学习中的不平衡类别 原文地址:How to Handle Imbalanced Classes in Machine Learning 原文作者:elitedatascience 译文出自:掘金翻译计划 本文永久链接:github.com/xitu/gold-m- 译者:RichardLeeH 校对者:lsvih, lileizhenshuai 如何处理机器学习中的不平衡类别 不平衡类别使得"准确率"失去意义.这是机器学习 (特别是在分类)中一个令人惊讶的常见问题,出现于每

MatterTrack Route Of Network Traffic :: Matter

Python 1.1?基础 while语句 字符串边缘填充 列出文件夹中的指定文件类型 All Combinations For A List Of Objects Apply Operations Over Items In A List Applying Functions To List Items Arithmetic Basics Assignment Operators Basic Operations With NumPy Array Breaking Up String Vari

如何解决机器学习中数据不平衡问题

作者:无影随想 时间:2016年1月. 出处:http://www.zhaokv.com/2016/01/learning-from-imbalanced-data.html 声明:版权所有,转载请联系作者并注明出处 这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值.与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难.数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一. 一.数据不平衡 在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布是