机器学习概览

课程链接

Machine Learning – Coursera

参考链接

shogun

scikit-learn

mlpy - Machine Learning Python

FANN - Fast Artificial Neural Network Library

Weka 3: Data Mining Software in Java

知乎问答

机器学习该怎么入门?

机器学习应该准备哪些数学预备知识?

机器学习、数据挖掘 如何进阶成为大神?

机器学习专家与统计学家观点上有哪些不同?

机器学习,数据挖掘在研究生阶段大概要学些什么?

学习资料:
李航 统计学习方法
公开课
机器学习实战
机器学习-Mitchell
统计

时间: 2024-10-08 10:08:10

机器学习概览的相关文章

这可能是AI、机器学习和大数据领域覆盖最全的一份速查表

https://mp.weixin.qq.com/s?__biz=MjM5ODE1NDYyMA==&mid=2653390110&idx=1&sn=b3e5d6e946b719d08b67d9ebf88283fe&chksm=bd1c3d0d8a6bb41bf05a8ccc9f375528c7c5e4223b190acc9593082b50e17855d2ccdd0e8ac2&mpshare=1&scene=23&srcid=0110mg1nBdOA

机器学习:基本概念、五大流派与九种常见算法

机器学习正在进步,我们正在不断接近创造人工智能的目标.语音识别.图像检测.机器翻译.风格迁移等技术已经在生活中开始得到了应用,但机器学习的发展仍还在继续,有人认为这场变革有可能会彻底改变人类文明的发展方向乃至人类自身.但你了解现在正在发生的这场变革吗?四大会计师事务所之一的普华永道(PwC)近日发布了多份解读机器学习基础的图表,其中介绍了机器学习的基本概念.原理.历史.未来趋势和一些常见的算法. 一.机器学习概览 1. 什么是机器学习? 机器通过分析大量数据来进行学习.比如说,不需要通过编程来识

Sklearn 与 TensorFlow 机器学习实用指南(补档)

协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 ApacheCN - 机器学习交流群 629470233 ApacheCN 学习资源 利用 Python 进行数据分析 第二版 PDF格式 EPUB格式 MOBI格式 英文仓库 中文仓库 目录结构 Sklearn 与 TensorFlow 机器学习实用指南 零.前言 一.机器学习概览 二.一个完整的机器学习项目 三.分类 四.训练模型 五.支持向量机 六.决策树 七.集成学习和随机森林 八.

微软机器学习Azure Machine Learning入门概览

Azure Machine Learning(简称“AML”)是微软在其公有云Azure上推出的基于Web使用的一项机器学习服务,机器学习属人工智能的一个分支,它技术借助算法让电脑对大量流动数据集进行识别.这种方式能够通过历史数据来预测未来事件和行为,其实现方式明显优于传统的商业智能形式.微软的目标是简化使用机器学习的过程,以便于开发人员.业务分析师和数据科学家进行广泛.便捷地应用.这款服务的目的在于“将机器学习动力与云计算的简单性相结合”.AML目前在微软的Global Azure云服务平台提

机器学习算法概览

本文是翻译文章,但我并未逐字句的翻译,而是有所删减,并加入了一些自己的补充. 机器学习(Machine Learning, ML)是什么,作为一个MLer,经常难以向大家解释何为ML.久而久之,发现要理解或解释机器学习是什么,可以从机器学习可以解决的问题这个角度来说.对于MLers,理解ML解决的问题的类型也有助于我们更好的准备数据和选择算法. 十个机器学习问题样例 想入门机器学习的同学,经常会去看一些入门书,比如<集体智慧编程>.<机器学习实战>.<数据挖掘>.<

【转载】机器学习如门概览

导读:在本篇文章中,将对机器学习做个概要的介绍.本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践.当然,本文也面对一般读者,不会对阅读有相关的前提要求. 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢? 我并不直接回答这个问题前.相反,我想请大家看两张图,下图是图一: 图1 机器学习界的执牛耳者与互联网界的大鳄的联姻 这幅图上上的三人是当今机器学习界的执牛耳者.中间的是Geoffrey Hinton, 加拿大多伦多

【方法论】机器学习算法概览

http://blog.itpub.net/31542119/viewspace-2168911/ 1. 监督式学习 工作机制:这个算法由一个目标变量或结果变量(或因变量)组成.这些变量由已知的一系列预示变量(自变量)预测而来.利用这一系列变量,我们生成一个将输入值映射到期望输出值的函数.这个训练过程会一直持续,直到模型在训练数据上获得期望的精确度.监督式学习的例子有:回归.决策树.随机森林.K – 近邻算法.逻辑回归等. 2.非监督式学习 工作机制:在这个算法中,没有任何目标变量或结果变量要预

七步精通Python机器学习 转

开始.这是最容易令人丧失斗志的两个字.迈出第一步通常最艰难.当可以选择的方向太多时,就更让人两腿发软了. 从哪里开始? 本文旨在通过七个步骤,使用全部免费的线上资料,帮助新人获取最基本的 Python 机器学习知识,直至成为博学的机器学习实践者.这篇概述的主要目的是带领读者接触众多免费的学习资源.这些资源有很多,但哪些是最好的?哪些相互补充?怎样的学习顺序才最好? 我假定本文的读者不是以下任何领域的专家: ?  机器学习 ?  Python ?  任何Python的机器学习.科学计算.数据分析库

机器学习算法中如何选取超参数:学习速率、正则项系数、minibatch size

机器学习算法中如何选取超参数:学习速率.正则项系数.minibatch size 本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习算法中,如何选取初始的超参数的值.(本文会不断补充) 学习速率(learning rate,η) 运用梯度下降算法进行优化时,权重的更新规则中,在梯度项前会乘以一个系数,这个系数就叫学习速率η.下面讨论在训练时选取η的策略. 固定的学习速率.如果学习速率太小,则会使收敛过慢,如果学习速率太大,则会导致代价