约瑟夫问题(Josephus)

问题描述:已知n个人(以编号1,2,3...n分别表示)围成一圈。从编号为1的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,求最后那个人的编号(直到所有人全部出列,模拟该过程)?
解决:此问题可以用数组or链表实现,可以用数学方法进行简化(不用模拟过程时),也可以模拟该问题过程来求解。

数学分析:无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。若原问题仅仅是要求出最后的胜利者的序号,而不是要模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。

为了讨论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
  k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。
现在我们把他们的编号做一下转换:

k     --> 0
k+1   --> 1
k+2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x‘=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1~n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
由于是逐级递推,不需要保存每个f[i],程序也是异常简单。

int Josephus(int m,int n){
    int result=0;
    for(int i=2;i<= n;i++)
        result=(result + m) % i;
    return result+1;
}

模拟过程代码:

int Josephus2(int m,int n){
    bool a[n+1]={0};//0代表在环中
    int f=0,cnt=0,itr=0;//itr用来遍历,cnt报数,f记录出局人数
    while(f<n){
        ++itr;
        if(itr > n) itr=1;//环
        if(!a[itr]) cnt++;//在环中,报数
        if(cnt == m){
            cout<<"out--"<<itr<<"\t";
            a[itr] = 1;//踢出去
            cnt = 0;
            f++;
        }
    }
    cout<<endl;
    return itr;
}

  

时间: 2024-10-28 19:01:34

约瑟夫问题(Josephus)的相关文章

习题3.10 约瑟夫环 josephus问题

/* assume a header */ /* 双向循环链表 */ struct Node; typedef struct Node * PtrToNode; typedef PtrToNode List; typedef PtrToNode position; struct Node{ PtrToNode Previous; PtrToNode Next; int Ele; }; /* 删除双向循环链表中的元素例程 */ Position Delete( Position p ) { Pos

用循环链表求解约瑟夫问题

约瑟夫问题的提法:n个人围成一个圆圈,首先第1个人从1开始,一个人一个人的顺时针报数,报到第m个人,令其出列:然后再从下一个人开始,从1顺时针报数,报到第m个人,再令其出列,…,如此下去,直到圆圈中只剩一个人为止,此人即为优胜者. 例如  n = 8   m = 3 该问题老师让我们在带头节点的单循环链表,不带头节点的单循环链表,双向循环链表,静态循环链表中四选其一实现,我看到问题后第一反应选了带头节点单循环链表,以为这样可以统一空表和非空表的操作,事实上在这个问题中并不需要考虑这些,不过好在四

循环链表,约瑟夫环问题

约瑟夫(Josephus)环问题:编号为1,2,3,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数).一开始任选一个正整数作为报数的上限值m,从第一个人开始按顺时针方向自1开始顺序报数,报到m时停止.报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一人开始重新从1报数,如此下去,直到所有人全部出列为止. 建立n个人的单循环链表存储结构,运行结束后,输出依次出队的人的序号. #include <stdio.h>#include <stdlib.h>#incl

java数据结构题之约瑟夫问题

约瑟夫问题:转载自    约瑟夫问题 据说着名犹太历史/数学家约瑟夫(Josephus)有过以下的故事:在罗马人占领乔塔帕特後,40个犹太士兵与约瑟夫躲到一个洞中,眼见脱逃无望,一群人决定集体自杀,约瑟夫建议自杀方式,41个人排成圆圈,由第1个人开始报数,每报数到5的人就必须自杀,然後由下一个重新报数,直到所有人都自杀身亡为止.如果你是约瑟夫,你应该在哪个位置才能活下来(最后只剩下你)? 我的答案: package p1; import java.util.LinkedList; import 

约瑟夫问题的解法集锦

约瑟夫问题的N种解法 1 问题的历史以及不同的版本 1.1  约瑟夫环(Josephus)问题是由古罗马的史学家约瑟夫(Josephus)提出的,他参加并记录了公元66-70年犹太人反抗罗马的起义.约瑟夫作为一个将军,设法守住了裘达伯特城达47天之久,在城市沦陷之后,他和40名死硬的将士在附近的一个洞穴中避难.在那里,这些叛乱者表决说"要投降毋宁死".于是,约瑟夫建议每个人轮流杀死他旁边的人,而这个顺序是由抽签决定的.约瑟夫有预谋地抓到了最后一签,并且,作为洞穴中的两个幸存者之一,他说

小朋友学数据结构(1):约瑟夫环的链表解法、数组解法和数学公式解法

约瑟夫环的链表解法.数组解法和数学公式解法 约瑟夫环(Josephus)问题是由古罗马的史学家约瑟夫(Josephus)提出的,他参加并记录了公元66-70年犹太人反抗罗马的起义.约瑟夫作为一个将军,设法守住了裘达伯特城达47天之久,在城市沦陷之后,他和40名死硬的将士在附近的一个洞穴中避难.在那里,这些叛乱者表决说"要投降毋宁死".于是,约瑟夫建议每个人轮流杀死他旁边的人,而这个顺序是由抽签决定的.约瑟夫有预谋地抓到了最后一签,并且,作为洞穴中的两个幸存者之一,他说服了他原先的牺牲品

PHP树生成迷宫及A*自己主动寻路算法

PHP树生成迷宫及A*自己主动寻路算法 迷宫算法是採用树的深度遍历原理.这样生成的迷宫相当的细,并且死胡同数量相对较少! 随意两点之间都存在唯一的一条通路. 至于A*寻路算法是最大众化的一全自己主动寻路算法 完整代码已上传,http://download.csdn.net/detail/hello_katty/8885779 ,此处做些简单解释,还须要大家自己思考动手.废话不多说,贴上带代码 迷宫生成类: /** 生成迷宫类 * @date 2015-07-10 * @edit http://w

经典算法大全

原文地址:经典算法大全 作者:liurhyme 经                                                                    典                                                                    算                                                                    法                  

PHP树生成迷宫及A*自动寻路算法

PHP树生成迷宫及A*自动寻路算法 迷宫算法是采用树的深度遍历原理,这样生成的迷宫相当的细,而且死胡同数量相对较少! 任意两点之间都存在唯一的一条通路. 至于A*寻路算法是最大众化的一全自动寻路算法 完整代码已上传,http://download.csdn.net/detail/hello_katty/8885779 ,此处做些简单解释,还需要大家自己思考动手.废话不多说,贴上带代码 迷宫生成类: /** 生成迷宫类 * @date 2015-07-10 * @edit http://www.l

数据结构学习笔记——线性表的应用

数据结构学习笔记——线性表的应用 线性表的应用 线性表的自然连接 计算任意两个表的简单自然连接过程讨论线性表的应用.假设有两个表A和B,分别是m1行.n1列和m2行.n2列,它们简单自然连接结果C=A*B(i==j),其中i表示表A中列号,j表示表B中的列号,C为A和B的笛卡儿积中满足指定连接条件的所有记录组,该连接条件为表A的第i列与表B的第j列相等. 如:         1 2 3                3 5 A  =  2 3 3         B =  1 6