Spark累加器使用
转贴请声明原文:http://blog.csdn.net/duck_genuine/article/details/41550019
使用spark累加器,解决视频平均播放数计算,以及视频播放数平方和平均值
val totalTimes=sc.accumulator(0l) val totalVids=sc.accumulator(0) val totalPow2Times=sc.accumulator(0d) val timesFile=sc.textFile("/user/zhenyuan.yu/DumpIdTimesJob_tmp_out") timesFile.foreach(f=>{ val vid_times=f.split("\t") var times=vid_times(1).toInt if(times>10000000)times=10000000 if(times>500){ val times_d=times.toDouble totalTimes+=times totalPow2Times+=Math.pow(times_d,2) totalVids+=1 } } ) val avgTimes=totalTimes.value/totalVids.value val avgPow2Times=totalPow2Times.value/totalVids.value println("totalTimes:"+totalTimes+",totalVids:"+totalVids+",totalPow2Times:"+totalPow2Times) println("avgTimes:"+avgTimes+",avgPow2Times:"+avgPow2Times)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
计算视频播放数每个区间占用比例
val totalVids=sc.accumulator(0) val timesFile=sc.textFile("/user/zhenyuan.yu/DumpIdTimesJob_tmp_out") val keysList=List(100, 500, 1000, 2000, 5000, 10000, 20000, 40000, 80000, 100000, 200000, 300000, 500000, 1000000, 2000000, 5000000, 10000000) val timesRDD=timesFile.map(f=>{ val vid_times=f.split("\t") var times=vid_times(1).toInt times }).filter(_>50).map(times=>{ totalVids+=1 var key=0 var end=false var i=0 var size=keysList.size while(i<size && !end){ key=keysList(i) if(times<key){ end=true } i+=1 } (key,1) }).reduceByKey(_+_) val rdd=timesRDD.collect() println("totalVid:"+totalVids) for(i<-0 to rdd.size-1){ val times_times=rdd(i) val percent=times_times._2.toFloat/totalVids.value println("times:<"+times_times._1+",vid_num:"+times_times._2+",percent:"+percent) }
时间: 2024-10-15 17:36:22