驱动程序分层分离概念_总线驱动设备模型_P

分层概念:

驱动程序向上注册的原理:

比如:输入子程序一个input.c作为一层,下层为Dev.c和Dir.c,分别编写Dev.c和Dir.c向上Input.c注册;如图所示

分离概念:

分离概念主要是讲,设备驱动程序分成两个部分,也将引进另一个新概念bus_dri_dev模型

总线-驱动-设备模式,是讲吧一个驱动分成两个部分,分别挂载到一条总线上的链表中,总线上有.match函数还对两个链表相同名字相匹配,匹配成功跳到driver驱动程序的probe函数来实现驱动的操作。

一下例子主要编写总线驱动设备模式来实现一个控制LED灯的驱动实验:

led_drv.c

#include <linux/module.h>
#include <linux/version.h>

#include <linux/init.h>

#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/serial_core.h>
#include <linux/platform_device.h>

/* 分配/设置/注册一个platform_device */

static struct resource led_resource[] = {
    [0] = {
        .start = 0x56000050,
        .end   = 0x56000050 + 8 - 1,
        .flags = IORESOURCE_MEM,
    },
    [1] = {
        .start = 5,
        .end   = 5,
        .flags = IORESOURCE_IRQ,
    }

};

static void led_release(struct device * dev)
{
}

static struct platform_device led_dev = {
    .name         = "myled",
    .id       = -1,
    .num_resources    = ARRAY_SIZE(led_resource),
    .resource     = led_resource,
    .dev = {
        .release = led_release,
    },
};

static int led_dev_init(void)
{
    platform_device_register(&led_dev);
    return 0;
}

static void led_dev_exit(void)
{
    platform_device_unregister(&led_dev);
}

module_init(led_dev_init);
module_exit(led_dev_exit);

MODULE_LICENSE("GPL");

led_dev.c

#include <linux/module.h>
#include <linux/version.h>

#include <linux/init.h>

#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/serial_core.h>
#include <linux/platform_device.h>

/* 分配/设置/注册一个platform_device */

static struct resource led_resource[] = {
    [0] = {
        .start = 0x56000050,
        .end   = 0x56000050 + 8 - 1,
        .flags = IORESOURCE_MEM,
    },
    [1] = {
        .start = 5,
        .end   = 5,
        .flags = IORESOURCE_IRQ,
    }

};

static void led_release(struct device * dev)
{
}

static struct platform_device led_dev = {
    .name         = "myled",
    .id       = -1,
    .num_resources    = ARRAY_SIZE(led_resource),
    .resource     = led_resource,
    .dev = {
        .release = led_release,
    },
};

static int led_dev_init(void)
{
    platform_device_register(&led_dev);
    return 0;
}

static void led_dev_exit(void)
{
    platform_device_unregister(&led_dev);
}

module_init(led_dev_init);
module_exit(led_dev_exit);

MODULE_LICENSE("GPL");

Makefile:

KERN_DIR = /work/system/linux-2.6.22.6

all:
    make -C $(KERN_DIR) M=`pwd` modules 

clean:
    make -C $(KERN_DIR) M=`pwd` modules clean
    rm -rf modules.order

obj-m    += led_drv.o
obj-m    += led_dev.o

led_test.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

/* led_test on
 * led_test off
 */
int main(int argc, char **argv)
{
    int fd;
    int val = 1;
    fd = open("/dev/led", O_RDWR);
    if (fd < 0)
    {
        printf("can‘t open!\n");
    }
    if (argc != 2)
    {
        printf("Usage :\n");
        printf("%s <on|off>\n", argv[0]);
        return 0;
    }

    if (strcmp(argv[1], "on") == 0)
    {
        val  = 1;
    }
    else
    {
        val = 0;
    }

    write(fd, &val, 4);
    return 0;
}
时间: 2024-08-28 08:23:19

驱动程序分层分离概念_总线驱动设备模型_P的相关文章

Linux平台总线驱动设备模型

platform总线是一种虚拟的总线,相应的设备则为platform_device,而驱动则为platform_driver.Linux 2.6的设备驱动模型中,把I2C.RTC.LCD等都归纳为platform_device. 总线将设备和驱动绑定,在系统每注册一个设备的时候,会寻找与之匹配的驱动:相反的,在系统每注册一个驱动的时候,会寻找与之匹配的设备,而匹配由总线完成. Linux2.6系统中定义了一个bus_type的实例platform_bus_type [cpp] view plai

virtio的qemu总线与设备模型

(很多内容是网上找的,+上我个人的一点理解,推荐大家去看 http://mnstory.net/2014/10/qemu-device-simulation 这篇文章) qemu启动时,如果配置了相应virtio设备,会对guest的pci总线,virtio设备等进行模拟,先来看看qemu的设备模拟,那i8254/PIT为例(PIT的硬件规范略过,有兴趣的话可以参考 http://wiki.osdev.org/Programmable_Interval_Timer) hw/timer/i8254

linux设备模型

为了降低设备多样性带来的Linux驱动开发的复杂度,以及设备热拔插处理.电源管理等,Linux内核提出了设备模型(也称作Driver Model)的概念.设备模型将硬件设备归纳.分类,然后抽象出一套标准的数据结构和接口.驱动的开发,就简化为对内核所规定的数据结构的填充和实现. 我们知道linux内核中常见的的总线有I2C总线,PCI总线,串口总线,SPI总线,PCI总线,CAN总线,单总线等,所以有些设备和驱动就可以挂在这些总线上,然后通过总线上的match进行设备和驱动的匹配.但是有的设备并不

设备模型(device-model)之平台总线(bus),驱动(driver),设备(device)

关于关于驱动设备模型相关概念请参考<Linux Device Drivers>等相关书籍,和内核源码目录...\Documentation\driver-model 简单来说总线(bus),驱动(driver),设备(device)这三者之间的关系就是:驱动开发者可以通过总线(bus)来将驱动(driver)和设备(device)进行隔离,这样的好处就是开发者可以将相对稳定不变的驱动(driver)独立起来,可以通过总线(bus)来桥接与之匹配的设备(device).设备(device)只需要

Exynos4412 IIC总线驱动开发(一)—— IIC 基础概念及驱动架构分析

关于Exynos4412 IIC 裸机开发请看 :Exynos4412 裸机开发 -- IIC总线 ,下面回顾下 IIC 基础概念 一.IIC 基础概念 IIC(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备.IIC总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信.例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇.可随时监

linux设备驱动归纳总结(九):1.platform总线的设备和驱动【转】

本文转载自:http://blog.chinaunix.net/uid-25014876-id-111745.html linux设备驱动归纳总结(九):1.platform总线的设备和驱动 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 这一节可以理解是第八章的延伸,从这节开始介绍platform设备驱动. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Linux SPI总线和设备驱动架构之一:系统概述【转】

转自:http://blog.csdn.net/droidphone/article/details/23367051/ 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 硬件结构 工作时序 软件架构 SPI控制器驱动程序 SPI通用接口封装层 SPI协议驱动程序 SPI通用设备驱动程序 SPI是"Serial Peripheral Interface" 的缩写,是一种四线制的同步串行通信接口,用来连接微控制器.传感器.存储设备,SPI设备分为主设备和从设备两种,

Linux SPI总线和设备驱动架构之一:系统概述

SPI是"Serial Peripheral Interface" 的缩写,是一种四线制的同步串行通信接口,用来连接微控制器.传感器.存储设备,SPI设备分为主设备和从设备两种,用于通信和控制的四根线分别是: CS    片选信号 SCK  时钟信号 MISO  主设备的数据输入.从设备的数据输出脚 MOSI  主设备的数据输出.从设备的数据输入脚 因为在大多数情况下,CPU或SOC一侧通常都是工作在主设备模式,所以,目前的Linux内核版本中,只实现了主模式的驱动框架. /*****

linux驱动分层分离思想

转:https://blog.csdn.net/zqixiao_09/article/details/51088887 前面我们学习I2C.USB.SD驱动时,有没有发现一个共性,就是在驱动开发时,每个驱动都分层三部分,由上到下分别是: 1.XXX 设备驱动 2.XXX 核心层 3.XXX 主机控制器驱动 而需要我们编写的主要是设备驱动部分,主机控制器驱动部分也有少量编写,二者进行交互主要时由核心层提供的接口来实现:这样结构清晰,大大地有利于我们的驱动开发,这其中就是利用了Linux设备驱动开发