hdu3713 Double Maze

Problem Description

Unlike single maze, double maze requires a common sequence of commands to solve both mazes. See the figure below for a quick understanding.

A maze is made up of 6*6 cells. A cell can be either a hole or a square. Moreover, a cell may be surrounded by barriers. There is ONLY one start cell (with a ball) and ONLY one end cell (with a star) in a single maze.These two cells are both squares. It is possible that the start cell and the end cell are the same one. The goal of a single maze is to move the ball from the start cell to the end cell. There are four commands in total,‘L‘, ‘D‘, ‘R‘ and ‘U‘ corresponding to moving the ball left, down, right and up one cell, respectively. The barriers may make the commands take no effect, i.e., the ball does NOT move if there is a barrier on the way.
When the ball gets to a hole or outside of the maze, it fails. A double maze is made up of two single mazes. The commands control two balls simultaneously, and the movements of two balls are according to the rules described above independently. Both balls will continue to move simultaneously if at least one of the balls has not got to the end cell.
So, a ball may move out of the end cell since the other ball has not been to the target. A double maze passes when both balls get to their end cells, or fails if either of the two mazes fails. The goal of double maze is to get the shortest sequence of commands to pass. If there are multiple solutions, get the lexical minimum one.
To simplify the input, a cell is encoded to an integer as follows. The lowest 4 bits signal the existence of the barriers around a cell. The fifth bit indicates whether a cell is a hole or not. The sixth and seventh bits are set for the start cell and end cell. Details are listed in the following table with bits counted from lowest bit. For a barrier, both of the two adjacent cells will have the corresponding barrier bit set. Note that the first two mazes in the sample input is the encoding of two mazes in the figure above, make sure you understand the encoding right.

Input

The first line of input gives the total number of mazes, T (1 < T ≤ 20). Then follow T mazes. Each maze is a 6*6 matrix, representing the encoding of the original maze. There is a blank line between mazes.

Output

For every two consecutive mazes, you should treat them as a double maze and output the answer. So there are actually T - 1 answers. For each double maze, output the shortest sequence of commands to pass. If there are multiple solutions, output the lexicographically minimum one. If there is no way to pass, output -1 instead.

Sample Input

3
16 0 18 16 18 24
20 19 24 16 28 1
18 28 17 0 22 17
25 20 17 18 88 20
2 16 48 28 17 16
24 16 16 20 23 1

16 0 18 16 18 24
20 19 24 20 29 1
18 28 17 16 22 17
8 20 1 18 24 20
19 80 48 24 16 0
24 16 16 16 22 19

18 16 18 16 18 80
24 18 24 16 24 18
18 24 0 0 18 24
24 18 0 0 24 18
18 24 18 16 18 24
56 18 24 18 24 18

Sample Output

RRLULLLRRDLU
RURDRLLLURDULURRRRRDDU

Author

GAO, Yuan

Source

2010 Asia Chengdu Regional Contest

Recommend

zhengfeng

题意:给出两个迷宫,每个迷宫各有起点和终点,有的格子能走有的不行,格子与格子之间还可能有护栏。同时控制两个迷宫每次朝同一个方向移动,问最快使得两个迷宫同时到达终点的步数,有多个最优解输出字典序最小的一个。

思路:把两个图合成一个图,建边,用bfs,总共也就6的4次方个点。以dlru的顺序查找,找到的保证字典序最小。用一个数组记录其前驱点,找到答案后倒着输出就好。

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;

#define two(x) (1<<x)
#define inf 200000000
int  T;
char c[4]={‘D‘,‘L‘,‘R‘,‘U‘};
int d[2][37][4],st[2],en[2],f[37][37];
bool can[2][37];
int fa1[37][37],fa2[37][37],dir[37][37],ans[2000];

void init(int cur)
{
	memset(d[cur],0,sizeof(d[cur]));
	memset(can[cur],1,sizeof(can[cur]));
	int x;
	for (int i=1;i<=6;++i)
		for (int j=1;j<=6;++j)
		{
			int t=(i-1)*6+j;
			scanf("%d",&x);
			if (x & two(1)) d[cur][t][0]=t;
			else if (i<6) d[cur][t][0]=t+6;
			if (x & two(0)) d[cur][t][1]=t;
			else if (j>1) d[cur][t][1]=t-1;
			if (x & two(2)) d[cur][t][2]=t;
			else if (j<6) d[cur][t][2]=t+1;
			if (x & two(3)) d[cur][t][3]=t;
			else if (i>1) d[cur][t][3]=t-6;
			if ((x & two(4))==0) can[cur][t]=false;
			if (x & two(5)) st[cur]=t;
			if (x & two(6)) en[cur]=t;
		}
}

void bfs()
{
	queue<int> q1,q2;
	bool p[37][37];
	memset(p,1,sizeof(p));
	q1.push(st[0]);
	q2.push(st[1]);
	p[st[0]][st[1]]=false;
	while (!q1.empty())
	{
		int x=q1.front(),y=q2.front();
		q1.pop();q2.pop();
		for (int i=0;i<=3;++i)
		{
			int tx=d[0][x][i],ty=d[1][y][i];
			if (tx && ty && can[0][tx] && can[1][ty])
				if (p[tx][ty])
				{
					q1.push(tx);
					q2.push(ty);
					p[tx][ty]=false;
					fa1[tx][ty]=x;
					fa2[tx][ty]=y;
					dir[tx][ty]=i;
				}
		}
	}
}

void solve()
{
	memset(dir,-1,sizeof(dir));
	dir[st[0]][st[1]]=5;
	bfs();
	int x=en[0],y=en[1];
	if (dir[x][y]==-1)
	{
		printf("-1\n");
		return;
	}
	int tot=0,tx,ty;
	while (!(x==st[0] && y==st[1]))
	{
		ans[++tot]=dir[x][y];
		tx=fa1[x][y];
		ty=fa2[x][y];
		x=tx;y=ty;
	}
	for (int i=tot;i>0;--i)
		printf("%c",c[ans[i]]);
	printf("\n");
}

int main()
{
	scanf("%d",&T);
	init(1);
	for (int i=2;i<=T;++i)
	{
		init(1 & i);
		solve();
	}
	return 0;
}

  

时间: 2024-10-19 22:25:01

hdu3713 Double Maze的相关文章

ZOJ 3420 Double Maze (BFS)

链接 :  http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3420 普通的BFS 两个图的状态表示成一个状态.记录答案直接用string保存操作. #include <iostream> #include <sstream> #include <cstring> #include <cstdio> #include <vector> #include <stac

hdu - 2216 Game III &amp;&amp; xtu 1187 Double Maze (两个点的普通bfs)

http://acm.hdu.edu.cn/showproblem.php?pid=2216 zjt和sara在同一个地图里,zjt要去寻找sara,zjt每移动一步sara就要往相反方向移动,如果他们相邻或者在同一个格子里就算相遇. 输出最少步数.注意zjt每次必须要有能移动的点才移动,否则不能移动,但是sara没有能移动的点的话可以呆着不动. 用结构体保存两个点和相应的步数作为一个状态,然后用哈希函数映射出每一个状态的的哈希值,放入set中,判重. 注意哈希函数的选取要确保不能重复. 1 #

补题列表

上海网络赛: HDU 5468 Puzzled Elena HDU 5469 Antonidas HDU 5473 There was a kingdom 合肥网络赛: HDU 5487 Difference of Languages HDU 5486 Difference of Clustering HDU 5489 Removed Interval HDU 5492 Find a path HDU 5493 Queue 弱校联萌Day1: B. Carries D. Vertex Cover

HDU 3853:LOOPS(概率DP)

http://acm.split.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is tra

HDU 4035:Maze 概率DP求期望(有环)

Maze 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4035 题意: 有N(2 ≤ N ≤ 10000)个房间和一堆双向边(不存在环),每个房间有ki和ei两个值,分别代表回到房间1和游戏结束的概率,求游戏结束时通过的边数的期望 题解: 一道很好很经典的求期望的题 设E[i]为以i为起点,直到游戏结束所通过边数的期望,则E[1]即所求答案 设fa代表父亲节点(由于不存在环,则图为一棵树,设1为根节点),∑ch代表所有孩子节点,size代表与这

Maze Stretching Poj3897 二分+BFS

Description Usually the path in a maze is calculated as the sum of steps taken from the starting point until the ending point, assuming that the distance of one step is exactly 1. Lets assume that we could “stretch” (shorten or extend) the maze in ve

HDU 5617 Jam&#39;s maze(DP)

题目链接:点击打开链接 题意:给你一个n*n的矩阵.  求从(1,1)走到(n,n)所组成的回文串个数. 思路:一开始傻逼把状态写成了d[x][y][s],s表示一个串, 用map存的, 后来发现极不可行, 因为这个状态简直太大了, 包括了s串的所有情况. 只是相当于一个dfs中的剪枝罢了. 后来想到, 其实串是不必记录的, 我们只要统计个数, 所以不妨在DP的过程中就判断回文串的情况, 那么就需要同时记录两头的情况.  为了不爆内存, 将状态表示成d[i][x1][x2], 表示走了i步, 左

HDU 4035:Maze(概率DP)

http://acm.split.hdu.edu.cn/showproblem.php?pid=4035 Maze Special Judge Problem Description When wake up, lxhgww find himself in a huge maze. The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and

Meandering Through the Maze of MFC Message and Command Routing

Meandering Through the Maze of MFC Message and Command Routing Paul DiLascia Paul DiLascia is a freelance software consultant specializing in developing C++ applications for Windows. He is the author of Windows++: Writing Reusable Code in C++ (Addiso