ARMv8 Linux内核源码分析:__flush_dcache_all()

1.1

/*

*  __flush_dcache_all()

*  Flush the wholeD-cache.

* Corrupted registers: x0-x7, x9-x11

*/

ENTRY(__flush_dcache_all)

//保证之前的访存指令的顺序

dsb sy

//读cache level id register

mrs x0, clidr_el1           // read clidr

//取bits[26:24](Level of Coherency for the cache hierarchy.)

//需要遵循cache一致性的cache层级(例如有3级cache,但2级需要做一致性)

and x3, x0, #0x7000000      // extract loc from clidr

//逻辑右移23位,把bits[26:24]放到bits[2:0]

lsr x3, x3, #23         // left align loc bit field

//如果需要做cache一致性的层级为0,则不需要flush,跳转到finished标记处。

cbz x3, finished            // if loc is 0, then no need toclean

//x10存放cache级,从level0 cache开始做flush

//以下三个循环loop3是set/way(x9),

//loop2是index(x7),loop1是cachelevel(x10)

mov x10, #0             // start clean at cache level 0

loop1:

//x10+2后右移一位正好等于1,再加上x10本身正好等于3

//每执行一次loop1,x2+3*执行次数,目的在于把x0(clidr_el1)右移3位,

//取下一个cache的ctype type fields字段,clidr_el1的格式见《ARMv8 ARM》

add x2, x10, x10, lsr #1        /

//x0逻辑右移x2位,给x1,提取cache类型放到x1中,x0中存放:clidr_el1

lsr x1, x0, x2

//掩掉高位,只取当前cache类型

and x1, x1, #7

/* 判断当前cache是什么类型:

* 000  No cache.

* 001  Instruction cache only.

* 010  Data cache only.

* 011  Separate instruction and data caches.

* 100  Unified cache.

*/

//小于2说明data cache不存在或者只有icache,

//跳转skip执行,大于等于2继续执行

cmp x1, #2

b.lt   skip

/*

* Save/disable and restore interrupts.

* .macro save_and_disable_irqs, olddaif

* mrs \olddaif,daif

* disable_irq

* .endm

*/

//保存daif到x9寄存器中,关闭中断

save_and_disable_irqs x9        // make CSSELR and CCSIDR access atomic

//选择当前cache级进行操作,csselr_el1寄存器bit[3:1]选择要操作的cache级

//第一次执行时x10=0,选择level 0级cache

msr csselr_el1,x10

//isb用于同步新的cssr和csidr寄存器

isb

//因为执行了“msr csselr_el1,x10”,所以要重新读取ccsidr_el1

mrs x1, ccsidr_el1          // read the new ccsidr

/*

* .macro  restore_irqs, olddaif

* msr daif, \olddaif

. * endm

*/

restore_irqs x9

//x1存储ccsidr_el1内容,低三位是(Log2(Number of bytes in cache line)) – 4

//加4后x2=(Log2(Numberof bytes in cache line))

and x2, x1, #7          // extract the length of the cachelines

add x2, x2, #4          // add 4 (line length offset)

mov x4, #0x3ff

//逻辑右移3位,提取bits[12:3](Associativityof cache) – 1,

//x4存储cache的way数

and x4, x4, x1, lsr #3     // find maximum number on the way size

//计算x4前面0的个数,存到x5

clzx5, x4              // find bit position of way sizeincrement

//提取bits[27:13]位:(Number of sets in cache) - 1

mov x7, #0x7fff

//x7中存储cache中的set数

and x7, x7, x1, lsr #13     // extract max number of the index size

loop2:

//把x4值备份

mov x9, x4              // create working copy of max waysize

loop3:

//把需要操作哪个way存储到x6

lsl x6, x9, x5

//确定操作哪一级的哪个way(x10指定操作哪一级cache)

orr x11, x10, x6            // factor way and cache number intox11

//确定操作哪个set

lsl x6, x7, x2

orr x11, x11, x6            // factor index number into x11

//x11中存储了哪一级cache(10),哪一路cache(x9),哪个set(x7)

dc  cisw, x11           // clean & invalidate by set/way

//way数-1

subs   x9, x9, #1          // decrementthe way

b.ge   loop3

subs   x7, x7, #1          // decrementthe index

b.ge   loop2

skip:

add x10, x10, #2            // increment cache number,

//为什么加2不是1?见loop1标号处解释

cmp x3, x10

b.gt   loop1

finished:

mov x10, #0             // swith back to cache level 0

msr csselr_el1, x10         // select current cache level incsselr

dsb sy

isb

ret

ENDPROC(__flush_dcache_all)

ARMv8 Linux内核源码分析:__flush_dcache_all(),布布扣,bubuko.com

时间: 2024-10-29 19:07:02

ARMv8 Linux内核源码分析:__flush_dcache_all()的相关文章

Linux内核源码分析--内核启动之(5)Image内核启动(rest_init函数)(Linux-3.0 ARMv7)【转】

原文地址:Linux内核源码分析--内核启动之(5)Image内核启动(rest_init函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.chinaunix.net/uid-25909619-id-4938395.html 前面粗略分析start_kernel函数,此函数中基本上是对内存管理和各子系统的数据结构初始化.在内核初始化函数start_kernel执行到最后,就是调用rest_init函数,这个函数的主要使命就是创建并启动内核线

Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7)【转】

原文地址:Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.chinaunix.net/uid-25909619-id-4938396.html 在基本分析完内核启动流程的之后,还有一个比较重要的初始化函数没有分析,那就是do_basic_setup.在内核init线程中调用了do_basic_setup,这个函数也做了很多内核和驱动的初始化工作,详解

Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3.0 ARMv7) 【转】

原文地址:Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.chinaunix.net/uid-25909619-id-4938390.html 在构架相关的汇编代码运行完之后,程序跳入了构架无关的内核C语言代码:init/main.c中的start_kernel函数,在这个函数中Linux内核开始真正进入初始化阶段, 下面我就顺这代码逐个函数的解释,但是这里并不会过于深入

Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7)【转】

原文地址:Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.chinaunix.net/uid-25909619-id-4938393.html 在分析start_kernel函数的时候,其中有构架相关的初始化函数setup_arch. 此函数根据构架而异,对于ARM构架的详细分析如下: void __init setup_arch(char **cmdlin

linux 内核源码分析 - 获取数组的大小

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 测试程序: #include<stdio.h> #include<stdlib.h> struct dev { int a; char b; float c; }; struct dev devs[]= { { 1,'a',7.0, }, { 1,'a',7.0, }, { 1,'a',7.0, }, }; int main() { printf("int is %d \

Linux内核源码分析方法

  一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都知道,想成为优秀的程序员,需要大量的实践和代码的编写.编程固然重要,但是往往只编程的人很容易把自己局限在自己的知识领域内.如果要扩展自己知识的广度,我们需要多接触其他人编写的代码,尤其是水平比我们更高的人编写的代码.通过这种途径,我们可以跳出自己知识圈的束缚,进入他人的知识圈,了解更多甚至我们一

Linux内核源码分析

Linux源码下载: https://www.kernel.org/ https://git.kernel.org/ Linux内核源码阅读以及工具(转): https://blog.csdn.net/kkwant/article/details/82795659 原文地址:https://www.cnblogs.com/2008nmj/p/11426766.html

Linux内核源码分析--内核启动之(1)zImage自解压过程(Linux-3.0 ARMv7) 【转】

转自:http://blog.chinaunix.net/uid-25909619-id-4938388.html 研究内核源码和内核运行原理的时候,很总要的一点是要了解内核的初始情况,也就是要了解内核启动过程.我在研究内核的内存管理的时候,想知道内核启动后的页表的放置,页表的初始化等信息,这促使我这次仔细地研究内核的启动代码. CPU在bootloader的帮助下将内核载入到了内存中,并开始执行.当然,bootloader必须为zImage做好必要的准备:  1. CPU 寄存器的设置: R0

Linux内核源码分析--内核启动之zImage自解压过程

copy from:https://www.cnblogs.com/pengdonglin137/p/3838245.html 阅读目录(Content) zImage来历 piggy.gz压缩文件的特点 vmlinux.lds arch/arm/boot/compressed/head.S arch/arm/boot/compressed/misc.c arch/arm/boot/compressed/decompressed.c lib/decompress_inflate.c 参考: ht