数值分析之奇异值分解(SVD)篇

在很多线性代数问题中,如果我们首先思考若做SVD,情况将会怎样,那么问题可能会得到更好的理解[1]。

                                      --Lloyd N. Trefethen & David Bau, lll

为了讨论问题的方便以及实际中遇到的大多数问题,在这里我们仅限于讨论实数矩阵,注意,其中涉及到的结论也很容易将其扩展到复矩阵中(实际上,很多教材采用的是复矩阵的描述方式),另外,使用符号 x,y 等表示向量,A,B,Q等表示矩阵。

首先给出正交矩阵的概念。所谓正交矩阵,即该矩阵不同的两个列向量之间作内积等于0(平面几何中垂直的定义在多维情形下推广),相同的列向量和自身做内积等于1(单位向量)。特别地,如果Q是一个n阶正交方阵,则Q‘Q=QQ‘=I, 即正交矩阵的转置即是该矩阵的逆矩阵。正交矩阵在数值分析中起着很重要的作用,一个主要的原因是它能够保持向量的2范数不变(因此SVD也常用于最小二乘问题的求解中),以及矩阵的2范数以及F范数不变,即||Qx||_2=||x||_2, ||AQ||_2=||A||_2,||QA||_F=||A||_F。

奇异值分解定理:对于任意一个 m*n 的实数矩阵 A,都存在 m*m 的正交矩阵 U 和 n*n 的正交矩阵V,以及 m*n 的对角矩阵 D=diag(d_1,d_2,...,d_r),使得

  A = UDV‘

其中,d_1>=d_2>=...>=d_r>=0 称为奇异值,U和V的各列分别称为左奇异向量右奇异向量

下面给出SVD的几何意义,n 维单位向量 x 在任意的 m*n 矩阵 A=UDV‘ 下的像下是 m 维空间中的一个超椭球。具体地,正交变换V‘保持了x的向量长度不变,对角矩阵D将球面拉伸到一个超椭球上,最后正交变换U将旋转这个超椭球,但不改变它的形状,参见下图。

图1 SVD几何解释示意图[2]

奇异值分解的矩阵性质:

1. 矩阵 A 的秩等于非零奇异值的个数

2. 矩阵 A 的值域空间等于由 U 的前 r 个列向量张成的空间,而 A 的零空间是由 V 的后面 n-r 个列向量张成的空间。

3. ||A||_2=d_1, ||A||_F=sqrt(d_1+...+d_r)。

4. A 的非零奇异值的平方等于 AA‘ 和 A’A 的非零特征值。

注意,一旦能够得到A的奇异值分解,按照上述给出的性质,那么关于A的秩,A的值域或者零空间的基,以及A的2-范数,F-范数等就自然地能够得到。从这方面来看,SVD可以看作是求解这些问题的一个工具。除此之外,它还被广泛地用来求解最小二乘问题,正则化问题,低秩逼近问题,数据压缩问题,文本处理中的分类问题[4]等

细心的童鞋发现,上面的所有结论都是建立在SVD定理正确以及能够有效计算出给定矩阵A的SVD分解的基础上。关于第一个问题,可以使用数学归纳法进行证明[3];第二个问题,由于证明中采用了数学归纳法,显然它不能有效地求解出具体矩阵的SVD分解,而数值求解SVD需要借助于对称矩阵的特征值分解(一个简单的想法是对 AA‘ 进行特征值分解,然后得到 A 的奇异值分解,可惜该类方法数值稳定性较差,细节内容不展开叙述)。

最后,对矩阵的奇异值和矩阵的特征值之间的联系进行几点说明。第一,对于任意矩阵,都存在奇异值分解,而并非所有矩阵都存在特征值分解的;第二,奇异值分解中使用的是正交的矩阵,而特征值分解中使用的基一般不是正交的;第三,矩阵最小奇异值小于矩阵最小特征值的模长,矩阵最大奇异值大于矩阵最大奇异值的模长[5]。

参考文献:

[1] 数值线性代数 Chap4-5,L N. Trefethen,David Bau, lll 著,陆金甫,关治译,人民邮电出版社,2006年

[2] 应用数值线性代数,J W. Demmel著,王国荣译,人民邮电出版社,2007年

[3] 矩阵计算(第三版),Gene H.Golub,Charles F.Van Loan著,袁亚湘等译,人民邮电出版社,2011年

[4] 数学之美 Chap15,吴军著,人民邮电出版社,2013年

[5] 矩阵A的特征值与奇异值大小关系? https://www.zhihu.com/question/40181430/answer/85446211

时间: 2024-12-10 12:44:36

数值分析之奇异值分解(SVD)篇的相关文章

奇异值分解(SVD) --- 几何意义 (转载)

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(S

[机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value decomposition),翻译成中文就是奇异值分解.SVD的用处有很多,比如:LSA(隐性语义分析).推荐系统.特征压缩(或称数据降维).SVD可以理解为:将一个比较复杂的矩阵用更小更简单的3个子矩阵的相乘来表示,这3个小矩阵描述了大矩阵重要的特性. 1.1奇异值分解的几何意义(因公式输入比较麻烦

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计

奇异值分解(SVD)原理详解及推导

声明:转自http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下. SVD不

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最小二乘法拟合(Least-Squares Fitting)的相关算法,这些算法的声明在 gsl_fit.h 中,所以直接用 GSL 提供的 gsl_fit_linear 函数就能解决这个问题.不过我想顺便多学习一些有关 SVD 的知识.所以就没直接使用 gsl_fit_linear 函数. SVD

【简化数据】奇异值分解(SVD)

[简化数据]奇异值分解(SVD) @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/42214205 1.简介 奇异值分解(singular Value Decomposition),简称SVD,线性代数中矩阵分解的方法.假如有一个矩阵A,对它进行奇异值分解,可以得到三个矩阵: 这三个矩阵的大小: 矩阵sigma(即上图U和V中间的矩阵)除了对角元素不为0,其他元素都为0,并且对角元素是从大到小排列的,前面的元

奇异值分解(SVD) --- 几何意义

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(SVD

奇异值分解(SVD)

特征值分解是利用矩阵的对角化来完成的:A=Q∧Q-1,但这种分解方法需要满足一个前提条件,即A是方阵. 奇异值分解(SVD)可以对m x n的矩阵进行分解.我们希望找到一个n x n的正交方阵V.一个m x m的正交方阵U和一个m x n的矩阵∑,使得A满足式子AV=U∑.因为V是正交矩阵,所以V是可逆,且V-1=VT,所以AV=U∑又可以写成A=U∑VT.下面分两步来找到V和U. 1)注意到ATA是一个对称方阵,如果存在一个n x n的正交方阵V.一个m x m的正交方阵U和一个m x n的矩

机器学习——降维(主成分分析PCA、线性判别分析LDA、奇异值分解SVD、局部线性嵌入LLE)

机器学习--降维(主成分分析PCA.线性判别分析LDA.奇异值分解SVD.局部线性嵌入LLE) 以下资料并非本人原创,因为觉得石头写的好,所以才转发备忘 (主成分分析(PCA)原理总结)[https://mp.weixin.qq.com/s/XuXK4inb9Yi-4ELCe_i0EA] 来源:?石头?机器学习算法那些事?3月1日 主成分分析(Principal components analysis,以下简称PCA)是最常用的降维方法之一,在数据压缩和消除冗余方面具有广泛的应用,本文由浅入深的