RbbitMQ基础知识

MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。

MQ特点

MQ是消费-生产者模型的一个典型的代表,一端往消息队列中不断写入消息,而另一端则可以读取或者订阅队列中的消息。MQ和JMS类似,但不同的是JMS是SUN JAVA消息中间件服务的一个标准和API定义,而MQ则是遵循了AMQP协议的具体实现和产品。

使用场景

在项目中,将一些无需即时返回且耗时的操作提取出来,进行了异步处理,而这种异步处理的方式大大的节省了服务器的请求响应时间,从而提高了系统的吞吐量。

 概念

   Bind:绑定了Queue和Exchange,意即为符合什么样路由规则的消息,将会放置入哪一个消息队列;

  Broker:简单来说就是消息队列服务器实体。
  Exchange:消息交换机,它指定消息按什么规则,路由到哪个队列。
  Queue:消息队列载体,每个消息都会被投入到一个或多个队列。
  Binding:绑定,它的作用就是把exchange和queue按照路由规则绑定起来。
  Routing Key:路由关键字,exchange根据这个关键字进行消息投递。
  vhost:虚拟主机,一个broker里可以开设多个vhost,用作不同用户的权限分离。
  producer:消息生产者,就是投递消息的程序。
  consumer:消息消费者,就是接受消息的程序。
  channel:消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务。

消息队列的使用过程大概如下:

(1)客户端连接到消息队列服务器,打开一个channel。
  (2)客户端声明一个exchange,并设置相关属性。
  (3)客户端声明一个queue,并设置相关属性。
  (4)客户端使用routing key,在exchange和queue之间建立好绑定关系。
  (5)客户端投递消息到exchange。

exchange接收到消息后,就根据消息的key和已经设置的binding,进行消息路由,将消息投递到一个或多个队列里。

exchange也有几个类型,完全根据key进行投递的叫做Direct交换机,例如,绑定时设置了routing key为”abc”,那么客户端提交的消息,只有设置了key为”abc”的才会投递到队列。对key进行模式匹配后进行投递的叫做Topic交换机,符号”#”匹配一个或多个词,符号”*”匹配正好一个词。例如”abc.#”匹配”abc.def.ghi”,”abc.*”只匹配”abc.def”。还有一种不需要key的,叫做Fanout交换机,它采取广播模式,一个消息进来时,投递到与该交换机绑定的所有队列。

RabbitMQ支持消息的持久化,也就是数据写在磁盘上,为了数据安全考虑,我想大多数用户都会选择持久化。消息队列持久化包括3个部分:
  (1)exchange持久化,在声明时指定durable => 1
  (2)queue持久化,在声明时指定durable => 1
  (3)消息持久化,在投递时指定delivery_mode => 2(1是非持久化)

如果exchange和queue都是持久化的,那么它们之间的binding也是持久化的。如果exchange和queue两者之间有一个持久化,一个非持久化,就不允许建立绑定。

时间: 2024-10-10 04:43:14

RbbitMQ基础知识的相关文章

MySQL数据库基础知识

day02 MySQL数据库基础知识 一.基础知识概述: 基础决定你这门课程的学习成败!只有学习好这些基础知识以后,你才能真正的运用自如.才能够对数据库有更深入的了解,道路才会越走越远. 二.基础知识: 1.数据库(database):数据库就好比是一个物理的文档柜,一个容器,把我们整理好的数据表等等归纳起来. 创建数据库命令:        create database 数据库名; 2.查看数据库         show databases; 3.打开指定的数据库         use 

linux入门基础知识及简单命令介绍

linux入门基础知识介绍 1.计算机硬件组成介绍 计算机主要由cpu(运算器.控制器),内存,I/O,外部存储等构成. cpu主要是用来对二进制数据进行运算操作,它从内存中取出数据,然后进行相应的运算操作.不能从硬盘中直接取数据. 内存从外部存储中取出数据供cpu运存.内存的最小单位是字节(byte) 备注:由于32的cpu逻辑寻址能力最大为32内存单元.因此32位cpu可以访问的最大内存空间为:4GB,算法如下: 2^32=2^10*2^10*2^10*2^2 =1024*1024*1024

BroadcastReceive基础知识总结

BroadcastReceive基础知识总结 1.BroadcastReceive简介 BroadcastReceive也就是"广播接收者"的意思,顾名思义,就是用来接收来自系统和应用中的广播 在Android系统中,广播体现在方方面面,例如当开机完成后系统会产生一条广播,接收到这条广播就能实现开机启动服务的功能,当网络状态改变时,系统会产生一条广播,接收到这条广播,就能及时的做出提示和保存数据等操作,当电池的电量改变的时候,系统会产生一条广播,接收到这条广播就能在电量低的时候告知用户

基础知识--:before伪元素和:after伪元素

http://book.51cto.com/art/201108/285688.htm 3.7  替换指定位置 大家都知道before和after是前.后的意思.但是奇怪的是,CSS中的:before伪元素和:after伪元素是为源文档中不存在的内容设置样式的. 没有内容怎么设置样式呢?别急!它们有一个content属性,一起使用就可以为某个选择器前.后的内容设置样式了. 下面就来了解一下:before伪元素和:after伪元素的用法. 视频教学:光盘/视频/3/3.7  替换指定位置.avi 

20_Shell语言———VIM编辑器基础知识三之窗口属性定制、配置文件及查找替换功能

Vim编辑器可以让用户按照需求来定制一些使用属性. 一.窗口属性定义 1)显示行号 行号不是内容,只是用来帮助用户确认文本所在的行.在vim编辑器中,如果要显示行号,可以在末行模式下输入: set number 如果想关闭,则可以在功能名称前面加上no,即: set nonumber 命令可以被简写,如set number 可以简写为 set nu:set nonumber 可以简写为 set nonu. 注意,上述设定仅对当前vim的进程有效,一旦当前进程关闭,这些设定就会失效,如果要使设定永

web基础知识(一)关于ajax传值最基础东西

HTTP方法之 GET对比POST GET:从指定的资源请求数据, POST:向指定的资源提交要被处理的数据 GET方法: 请注意,查询字符串(名称/值对)是在 GET 请求的 URL 中发送的: /test/demo_form.asp?name1=value1&name2=value2 有关 GET 请求的其他一些注释: GET 请求可被缓存 GET 请求保留在浏览器历史记录中 GET 请求可被收藏为书签 GET 请求不应在处理敏感数据时使用 GET 请求有长度限制 GET 请求只应当用于取回

线程基础知识

什么是线程: 在一个程序里的一个执行路线就叫做线程(thread).更准确的定义是:线程是"一个进程内部的控制序列" 一切进程至少都有一个执行线程 进程与线程 进程是资源竞争的基本单位 线程是程序执行的最小单位 线程共享进程数据,但也拥有自己的一部分数据 线程ID 一组寄存器 栈 errno 信号状态 优先级 fork和创建新线程的区别 当一个进程执行一个fork调用的时候,会创建出进程的一个新拷贝,新进程将拥有它自己的变量和它自己的PID.这个新进程的运行时间是独立的,它在执行时几乎

Keepalived基础知识

大纲: 一.什么是Keepalived? 二.VRRP协议简介. 三.Keepalived原理. 四.Keepalived配置文件详解. 五.Keepalived配置示例. 一.什么是Keepalived? 什么是Keepalived呢,keepalived观其名可知,保持存活,在网络里面就是保持在线了,也就是所谓的高可用或热备,用来防止单点故障(单点故障是指一旦某一点出现故障就会导致整个系统架构的不可用)的发生,那说到keepalived时不得不说的一个协议就是VRRP协议,可以说这个协议就是

【Python数据挖掘课程】六.Numpy、Pandas和Matplotlib包基础知识

前面几篇文章采用的案例的方法进行介绍的,这篇文章主要介绍Python常用的扩展包,同时结合数据挖掘相关知识介绍该包具体的用法,主要介绍Numpy.Pandas和Matplotlib三个包.目录:        一.Python常用扩展包        二.Numpy科学计算包        三.Pandas数据分析包        四.Matplotlib绘图包 前文推荐:       [Python数据挖掘课程]一.安装Python及爬虫入门介绍       [Python数据挖掘课程]二.K