【算法学习笔记】61.回溯法 DFS SJTU OJ 1106 sudoku

虽然DLX可以提高效率....但是对于NPC问题也不用太追求效率了,而且还只有一个测试点。

所以 只要DFS不断的填入,直到空格全部被填满;要注意的是DFS中全局变量的更新和恢复。

至于存储的方法,只要考虑每一行每一列每一个小块的不重复即可。

#include <iostream>
#include <cstring>
using namespace std;

int cnt = 0 ;//表示剩余的要填的空格的数目

struct point
{
    int x,y;
};

point epts[81+5];//存储空格

bool r[10][10], //r[i][k]表示在第i行是否有k这个数字
c[10][10], //c[j][k]表示在第j列是否有k这个数字
sq[4][4][10];//sq[t][t][k]表示在第t,t这个小块里 是否有k这个数字

int G[10][10];//存储整个输入的数独 其实没有必要

int ans = 0;

void dfs(int cur){
    if(ans > 1)
        return;
    if(cur < 0) {//如果全部的空格都填满了
        bool ok = true;
        //一定要判断合法性...
        for (int i = 0; i < 9; ++i){
            for (int j=1; j <= 9; ++j){
                if( (!r[i][j]) || (!c[i][j]) || (!sq[i/3][i/3][j]))
                    ok = false;
            }
        }
        if(ok)
            ans++;
        return;
    }
    int x = epts[cur].x;
    int y = epts[cur].y;

    for (int k = 1; k <= 9; ++k)
    {
        if(r[x][k] || c[y][k] || sq[x/3][y/3][k])
            continue;
        r[x][k] = c[y][k] = sq[x/3][y/3][k] = true;//设置存入
        //G[x][y] = k;
        dfs(cur-1);
        r[x][k] = c[y][k] = sq[x/3][y/3][k] = false;//取消存入
    }

    return;
}

int main(int argc, char const *argv[])
{
    int T;
    cin>>T;
    for (int t = 0; t < T; ++t)
    {
        cnt = 0;//初始化
        ans = 0;
        memset(r,false,sizeof(r));
        memset(c,false,sizeof(c));
        memset(sq,false,sizeof(sq));

        for (int i = 0; i < 9; ++i){
            for (int j=0; j < 9; ++j){
                int k;
                cin>>k;
                G[i][j] = k;
                if(k>0)
                    r[i][k] = c[j][k] = sq[i/3][j/3][k] = true;
                else
                    epts[cnt++] = (point){i,j}; //生成对象
            }
        }

        //从最后一个空格开始dfs 试图填满
        dfs(cnt-1);

        if(ans==1){
            cout<<"Yes"<<endl;
        }
        else
            cout<<"No"<<endl;
    }
    return 0;
}
 
时间: 2024-12-19 10:14:39

【算法学习笔记】61.回溯法 DFS SJTU OJ 1106 sudoku的相关文章

【算法学习笔记】51. 区间排序问题 SJTU OJ 1360 偶像丁姐的烦恼

Description 成为LL冠军的人气偶像丁姐最近比较烦,许多商业活动找上门来.因为每次商业活动给的毛爷爷都一样,所以丁姐希望能够尽可能多的参加这些活动.然而,商业活动的起止时间并不由丁姐说了算,因此丁姐想写一个程序,求出他最多能够参加的商业活动的数量. Input Format 第一行一个数n,表示可选活动的数量. 接下n行每行两个数,表示每个活动开始时间t1_i和结束的时间t2_i. Output Format 一个数字,表示丁姐最多能够参加的活动的数量. Sample Input 10

【算法学习笔记】50.字符串处理 SJTU OJ 1361 丁姐的周末

Description 丁姐来到了神秘的M78星云,为了成为和凹凸曼一样强大的男人有朝一日回到地球拯救世界,丁姐开始了刻苦的学习.但丁姐先要知道在M78星云上一周有多少天,这样他才能知道什么时候是周末可以带妹子出去玩.他找到一个老凹凸曼,但是老凹凸曼自己记性不太好,偶尔会告诉他错误的信息. 凹凸曼会告诉丁姐如下格式的信息: Today is xxxday. Yesterday was yyyend. Tomorrow will be zzzday. 规则1: xxx/yyy/zzz为任意字符串,

【算法学习笔记】43.动态规划 逆向思维 SJTU OJ 1012 增长率问题

1012. 增长率问题 Description 有一个数列,它是由自然数组成的,并且严格单调上升.最小的数不小于S,最大的不超过T.现在知道这个数列有一个性质:后一个数相对于前一个数的增长率总是百分比下的整数(如5相对于4的增长率是25%,25为整数:而9对7就不行了).现在问:这个数列最长可以有多长?满足最长要求的数列有多少个? Input Format 输入仅有一行,包含S和T两个数( 0<S<T≤200000 ). 30%的数据,0<S<T≤100 : 100%的数据,0&l

【算法学习笔记】60.经典动态规划 SJTU OJ 1370 赫萝的桃子

Description 赫萝最喜欢吃蜂蜜腌渍的桃子.然而她能够得到的桃子有限,因此赫萝必须精打细算.赫萝在b天内可以得到a个桃子,每天赫萝至少吃一个桃子,她想知道她在a天内有多少种吃桃子的方法.吃桃子的顺序并不重要,也就是说赫萝认为“第一天吃一个桃子第二天吃两个桃子”和“第一天吃两个桃子第二天吃一个桃子”算一种方法. Input Format 每个测试点有多组测试数据. 第一行一个数n,表示测试的数量. 接下来n行每行两个数a, b(a>b). Output Format 输出n行,每行一个数,

【算法学习笔记】87. 枚举路径 SJTU OJ 1999 二哥找宝藏

这个题只用BFS来搜索一次会很麻烦, 因为每次经过一个宝藏之后,要把所有的vis重置(因为可以重复经过同一点, 但是这样会有很多不必要的路径) 看题目的暗示 最多只有5个宝藏  我们要把所有的宝藏收集齐全, 如果确定了收集的顺序, 那么也就确定了路径 那么可以知道 A55的排列一共是120种路径 遍历起来毫无压力 我们枚举所有宝藏的全排列, 然后从起点开始走, 记录整个路径的步数, 最后取最小值即可. 这里生产全排列的方法利用了 STL的next_permutation函数 非常爽....(要引

【算法学习笔记】70.回文序列 动态规划 SJTU OJ 1066 小M家的牛们

这个题很多地方暗示了DP的路径. 我们处理时,dp[i][j]可以认为是从i坐标到j坐标的序列达到回文效果需要的最小代价,以此向外扩展,最终得到dp[0][M-1]就是结果. 我们要注意到处理dp[i][j]时,我们需要知道 dp(i+1,j-1)的结果,所以i必须降序,j必须升序,才能保证在计算dp(i,j)时,可以利用已经计算过的结果. 所以 i应该从M-2 到 0 递减 j在内层 从i+1到M-1 递增 在处理dp(i,j)时,第一要看name[i]和name[j]是否相等,如果相等的话,

【算法学习笔记】34.高精度除法 SJTU OJ 1026/1016

高精度除法, 这个和加减乘一样,我们都要从手算的角度入手.举一个例子,比如 524134 除以 123.结果是4261 第一位4的来源是 我们把 524和123对齐,然后进行循环减法,循环了4次,余32,将32134的前三位321继续和123对齐,循环减法2次,余75,把7534的前三位753和123对齐,循环减法6次,余15,将154和123对齐,只能减1次,所以结果是4 2 6 1. 把上述过程程序化 1.把A,B两个数存入char数组 0下标表示的是最高位2.把A的前lenB位和B对齐进行

算法复习笔记(回溯法,分支限界法)

回溯法 分支限界法 回溯法 回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法. 基本思想: 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树.当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯.(其实回溯法就是对隐式图的深度优先搜索

算法学习之【回溯法】--迷宫问题

题目描述 定义一个二维数组N*M(其中2<=N<=10;2<=M<=10),如5 × 5数组下所示: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, }; 表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线.入口点为[0,0],即第一空格是可以走的路. Input 一个N