POJ 3071 Football (概率DP)

题意:给定 2的n次方 个团队对每个队的战胜的概率,一块要打 n 场,每场都是 1 对 2, 2 对 3,每次都取赢的一方,问你最后谁是冠军的概率最大。

析:dp[i][j] 表示 第 i 场 j 胜的概率,每次只要算 i 相邻的且不是已经打过的 2 i-1次方个队,最后再选出概率最大的就好。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1;

typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 5e4 + 5;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
    return r >= 0 && r < n && c >= 0 && c < m;

}
double a[150][150];
double dp[10][150];
int f[10];

int main(){
    f[0] = 1;
    for(int i = 1; i < 10; ++i) f[i] = f[i-1] * 2;
    for(int i = 0; i < 150; ++i)  dp[0][i] = 1.0;
    while(scanf("%d", &n) == 1 && n >= 0){
        for(int i = 1; i <= f[n]; ++i)
            for(int j = 1; j <= f[n]; ++j)
                scanf("%lf", &a[i][j]);

        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= f[n]; ++j)
                dp[i][j] = 0.0;
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= f[n]; j += f[i])
                for(int k = j; k < j+f[i-1]; ++k)
                    for(int l = j+f[i-1]; l < j+f[i-1]+f[i-1]; ++l){
                        dp[i][k] += dp[i-1][k] * dp[i-1][l] * a[k][l];
                        dp[i][l] += dp[i-1][k] * dp[i-1][l] * a[l][k];
                    }

        double ans = 0.0;
        int idx = -1;
        for(int i = 1; i <= f[n]; ++i) if(dp[n][i]-ans >= eps){
            ans = dp[n][i];
            idx = i;
        }
        printf("%d\n", idx);
    }
    return 0;
}
时间: 2024-10-10 02:12:24

POJ 3071 Football (概率DP)的相关文章

[ACM] POJ 3071 Football (概率DP)

Football Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2875   Accepted: 1462 Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, -, 2n. In each round of the tournament, all teams still in the

poj 3071 Football (概率DP水题)

G - Football Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams

poj 3071 简单概率dp

题意很清晰,就是问最有可能获得冠军的队伍. 需要注意的是每轮比赛中,每个队都是和自己旁边的一个队比赛,采用淘汰赛制,所以需要决定第i轮的时候j队可以和哪些队比赛,然后求概率dp即可. 状态转移方程: dp[i][j] += dp[i - 1][j] * dp[i - 1][k] * p[j][k]; dp[i][j]表示第i轮j队获胜的概率 = 第i-1轮j队获胜的概率 * 第i-1轮k队获胜的概率 * j队打败k队的概率(之和). 前提是j和k在第i轮可能遇到. 判断方法: ( j >> (

POJ 3071 Football(简单 概率DP)

Football 原文链接:http://blog.csdn.net/xuechelingxiao/article/details/38520105 大意:2^n 个球队进行单场淘汰赛,每两只球队之间比赛会有胜负的概率,问最后谁夺冠的概率最大. 思路:简单的概率DP问题,主要是怎么处理哪两个球队比赛的问题. DP方程为 dp[i][j] = ∑(dp[i-1][j]*dp[i-1][k]*p[j][k]); //dp[i][j]表示第 i 轮的时候,第 j 支队伍赢的概率.. 对于其中位运算,可

POJ 3071 Football (动态规划-概率DP)

Football Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2768   Accepted: 1412 Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, -, 2n. In each round of the tournament, all teams still in the

poj 3071 Football (概率 dp)

链接:poj 3071 题意:有2^n个队,相邻的两两打淘汰赛,n轮后必定会决出冠军, 求最后哪个队夺冠的概率最大 分析:dp[i][j]表示第i轮的时候,第j去支队伍赢的概率 则dp[i][j]的前提就是i-1轮的时候,j是赢的,且第i轮赢了对方 接下来就是找到第i轮的时候,他的可能队手(难点) 所有对手的编号为1-2^n,通过二进制可以发现规律, 若第j队和对手k队在第i轮比赛,那么(j-1)和(k-1)二进制第i位刚好相反, 从i+1位开始所有高位是一样的,可以利用位运算判断是否为对手 状

POJ 3071 Football (概率DP)

概率dp的典型题.用dp[j][i]表示第j个队第i场赢的概率.那么这场要赢就必须前一场赢了而且这一场战胜了可能的对手.这些都好想,关键是怎么找出当前要算的队伍的所有可能的竞争对手?这个用异或来算,从队伍编号的二进制表示中可以看出规律来(从二进制和相关运算里找规律也是一个重要的思考角度). #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<s

POJ 3071 Football

Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, -, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the l

POJ 3071-Football(概率dp)

Football Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3145   Accepted: 1591 Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, -, 2n. In each round of the tournament, all teams still in the