详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html
这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题。
代码如下:(数据同上一篇博客)(是不是很简单????)
> x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y)
结果如下:
$coefficients Intercept X 0.8310557 0.9004584
说明: Intercept :截距
X: 变量x的系数
即对于一元一次函数截距式方程:y=0.9x+0.83
结果同上一篇博客的计算结果(python):
输出结果: k= 0.900458420439 b= 0.831055638877 cost:1 求解的拟合直线为: y=0.9x+0.83
如果你不追求绘图的美观,可以简单的直接用R绘制散点图观察规律也是可以的(当然也是可以通过设置参数调美观点的)。
> plot(x,y) ###x,y是上面已经赋值过的数据
结果如图:
时间: 2024-11-05 02:53:30