数字签名、数字证书、对称加密算法、非对称加密算法、单向加密(散列算法)

数字签名是什么?

1.

鲍勃有两把钥匙,一把是公钥,另一把是私钥。

2.

鲍勃把公钥送给他的朋友们----帕蒂、道格、苏珊----每人一把。

3.

苏珊给鲍勃写信,写完后用鲍勃的公钥加密,达到保密的效果。

4.

鲍勃收信后,用私钥解密,看到信件内容。

5.

鲍勃给苏珊回信,写完后用Hash函数,生成信件的摘要(digest)。

6.

然后,鲍勃使用私钥,对这个摘要加密,生成"数字签名"(signature)。

7.

鲍勃将这个签名,附在信件下面,一起发给苏珊。

8.

苏珊收信后,取下数字签名,用鲍勃的公钥解密,得到信件的摘要。由此证明,这封信确实是鲍勃发出的。

9.

苏珊再对信件本身使用Hash函数,将得到的结果,与上一步得到的摘要进行对比。如果两者一致,就证明这封信未被修改过。

10.

复杂的情况出现了。道格想欺骗苏珊,他偷偷使用了苏珊的电脑,用自己的公钥换走了鲍勃的公钥。因此,他就可以冒充鲍勃,写信给苏珊。

11.

苏珊发现,自己无法确定公钥是否真的属于鲍勃。她想到了一个办法,要求鲍勃去找"证书中心"(certificate authority,简称CA),为公钥做认证。证书中心用自己的私钥,对鲍勃的公钥和一些相关信息一起加密,生成"数字证书"(Digital Certificate)。

12.

鲍勃拿到数字证书以后,就可以放心了。以后再给苏珊写信,只要在签名的同时,再附上数字证书就行了。

13.

苏珊收信后,用CA的公钥解开数字证书,就可以拿到鲍勃真实的公钥了,然后就能证明"数字签名"是否真的是鲍勃签的。

14.

下面,我们看一个应用"数字证书"的实例:https协议。这个协议主要用于网页加密。

15.

首先,客户端向服务器发出加密请求。

16.

服务器用自己的私钥加密网页以后,连同本身的数字证书,一起发送给客户端。

17.

客户端(浏览器)的"证书管理器",有"受信任的根证书颁发机构"列表。客户端会根据这张列表,查看解开数字证书的公钥是否在列表之内。

18.

如果数字证书记载的网址,与你正在浏览的网址不一致,就说明这张证书可能被冒用,浏览器会发出警告。

19.

如果这张数字证书不是由受信任的机构颁发的,浏览器会发出另一种警告。

20.

数字证书如果是可靠的,客户端就可以使用证书中的服务器公钥,对信息进行加密,然后与服务器交换加密信息。

----------------------------

在签名的过程中,有一点很关键,收到数据的一方,需要自己保管好公钥,但是要知道每一个发送方都有一个公钥,那么接收数据的人需要保存非常多的公钥,这根本就管理不过来。并且本地保存的公钥有可能被篡改替换,无从发现。怎么解决这一问题了?由一个统一的证书管理机构来管理所有需要发送数据方的公钥,对公钥进行认证和加密。这个机构也就是我们常说的CA。认证加密后的公钥,即是证书,又称为CA证书,证书中包含了很多信息,最重要的是申请者的公钥。

CA机构在给公钥加密时,用的是一个统一的密钥对,在加密公钥时,用的是其中的私钥。这样,申请者拿到证书后,在发送数据时,用自己的私钥生成签名,将签名、证书和发送内容一起发给对方,对方拿到了证书后,需要对证书解密以获取到证书中的公钥,解密需要用到CA机构的”统一密钥对“中的公钥,这个公钥也就是我们常说的CA根证书,通常需要我们到证书颁发机构去下载并安装到相应的收取数据的客户端,如浏览器上面。这个公钥只需要安装一次。有了这个公钥之后,就可以解密证书,拿到发送方的公钥,然后解密发送方发过来的签名,获取摘要,重新计算摘要,作对比,以验证数据内容的完整性。

总结:

(1)信息 + HASH = 摘要    摘要 + 私钥 = 数字签名(给收方做对比用的,验证收发内容是否一致)

(2)公钥 + 相关信息 + CA私钥 = 数字证书(验证发送者是否正确,是可信任的公钥)

用于我发保密信息给你之前,你得让我相信真的是“你”让我“这么做”的。

(1)、对称加密算法

常用的算法包括:
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;

1、加密方和解密方使用同一个密钥。
2、加密解密的速度比较快,适合数据比较长时的使用。
3、密钥传输的过程不安全,且容易被破解,密钥管理也比较麻烦。
4、加密算法:DES(Data Encryption Standard)、3DES、AES(Advanced Encryption Standard,支持128、192、256、512位密钥的加密)、Blowfish。
5、加密工具:openssl、gpg(pgp工具)

(2)、非对称加密算法

RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);
ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。
ECC和RSA相比,在许多方面都有对绝对的优势,主要体现在以下方面:
抗攻击性强。相同的密钥长度,其抗攻击性要强很多倍。
计算量小,处理速度快。ECC总的速度比RSA、DSA要快得多。
存储空间占用小。ECC的密钥尺寸和系统参数与RSA、DSA相比要小得多,意味着它所占的存贮空间要小得多。这对于加密算法在IC卡上的应用具有特别重要的意义。
带宽要求低。当对长消息进行加解密时,三类密码系统有相同的带宽要求,但应用于短消息时ECC带宽要求却低得多。带宽要求低使ECC在无线网络领域具有广泛的应用前景。

1、每个用户拥用一对密钥加密:公钥和私钥。
2、公钥加密,私钥解密;私钥加密,公钥解密。
3、公钥传输的过程不安全,易被窃取和替换。
4、由于公钥使用的密钥长度非常长,所以公钥加密速度非常慢,一般不使用其去加密。
5、某一个用户用其私钥加密,其他用户用其公钥解密,实现数字签名的作用。
6、公钥加密的另一个作用是实现密钥交换。
7、加密和签名算法:RSA、ELGamal。
8、公钥签名算法:DSA。
9、加密工具:gpg、openssl

由于非对称加密算法的运行速度比对称加密算法的速度慢很多,当我们需要加密大量的数据时,建议采用对称加密算法,提高加解密速度。
对称加密算法不能实现签名,因此签名只能非对称算法。
由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。
在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。

(3)、单向加密(散列算法)

散列是信息的提炼,通常其长度要比信息小得多,且为一个固定长度。加密性强的散列一定是不可逆的,这就意味着通过散列结果,无法推出任何部分的原始信息。任何输入信息的变化,哪怕仅一位,都将导致散列结果的明显变化,这称之为雪崩效应。散列还应该是防冲突的,即找不出具有相同散列结果的两条信息。具有这些特性的散列结果就可以用于验证信息是否被修改。
单向散列函数一般用于产生消息摘要,密钥加密等,常见的有:
1、MD5(Message Digest Algorithm 5):是RSA数据安全公司开发的一种单向散列算法,非可逆,相同的明文产生相同的密文。
2、SHA(Secure Hash Algorithm):可以对任意长度的数据运算生成一个160位的数值;
SHA-1与MD5的比较
因为二者均由MD4导出,SHA-1和MD5彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
1、对强行供给的安全性:最显著和最重要的区别是SHA-1摘要比MD5摘要长32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD5是2128数量级的操作,而对SHA-1则是2160数量级的操作。这样,SHA-1对强行攻击有更大的强度。
2、对密码分析的安全性:由于MD5的设计,易受密码分析的攻击,SHA-1显得不易受这样的攻击。
3、速度:在相同的硬件上,SHA-1的运行速度比MD5慢。

1、特征:雪崩效应、定长输出和不可逆。
2、作用是:确保数据的完整性。
3、加密算法:md5(标准密钥长度128位)、sha1(标准密钥长度160位)、md4、CRC-32
4、加密工具:md5sum、sha1sum、openssl dgst。
5、计算某个文件的hash值,例如:md5sum/shalsum FileName,openssl dgst –md5/-sha1

时间: 2024-08-24 10:50:12

数字签名、数字证书、对称加密算法、非对称加密算法、单向加密(散列算法)的相关文章

个人理解c#对称加密 非对称加密 散列算法的应用场景

c#类库默认实现了一系列加密算法在System.Security.Cryptography; 命名空间下 对称加密 通过同一密匙进行加密和解密.往往应用在内部数据传输情况下.比如公司a程序 和B程序 .a程序要给B程序发送数据 但是为了防止明文发送 数据被窃取.那么我就定了一个协议传输的数据的byte字节都统一+1  而接收数据的情况下将Byte字节统一-1 然后就能获得正确的 数据(当然这个是一个简单的加密) ,真正应用的加密肯定比这个复杂很多 非对称加密 传输数据的双方有各自的公钥和私钥  

关于公钥私钥是否可以互相加解密的理解(附苹果开发者证书配置时非对称加密算法的应用)

查资料的时候发现很多人有疑惑,公钥和私钥到底哪个是用来加密,哪个是用来解密的,是否可以公钥加密私钥解密,同时也可以私钥加密公钥解密呢?针对这一问题,说下自己的理解. 首先要明确两个问题:(1)既可以公钥加密私钥解密,也可以私钥加密公钥解密:(2)加密解密和签名验证是两个不同的概念. (一)先来说加密解密:需要同时使用公钥和私钥的加密算法是非对称加密,最常见的便是RSA.举例说明非对称加密:如果A想要给B秘密的发一条信息,只需要B创建一套公钥(盒子)和私钥(钥匙),盒子可以随意分发,但是钥匙只能B

数字签名 数字证书

数字签名原理简介(附数字证书) 首先要了解什么叫对称加密和非对称加密,消息摘要这些知识. 1. 非对称加密 在通信双方,如果使用非对称加密,一般遵从这样的原则:公钥加密,私钥解密.同时,一般一个密钥加密,另一个密钥就可以解密. 因为公钥是公开的,如果用来解密,那么就很容易被不必要的人解密消息.因此,私钥也可以认为是个人身份的证明. 如果通信双方需要互发消息,那么应该建立两套非对称加密的机制(即两对公私钥密钥对),发消息的一方使用对方的公钥进行加密,接收消息的一方使用自己的私钥解密. 2.消息摘要

MD5(单向散列算法)原理分析

注:本文章转载于网络. MD5(单向散列算法)的全称是Message-Digest Algorithm 5(信息-摘要算法),经MD2.MD3和MD4发展而来.MD5算法的使用不需要支付任何版权费用. MD5功能:    输入任意长度的信息,经过处理,输出为128位的信息(数字指纹):    不同的输入得到的不同的结果(唯一性):    根据128位的输出结果不可能反推出输入的信息(不可逆): MD5属不属于加密算法:    认为不属于的人是因为他们觉得不能从密文(散列值)反过来得到原文,即没有

加解密算法一:散列算法、对称加解密

.Net中的加解密操作所涉及的对象都在命名空间System.Security.Cryptography下,所以应先在程序中添加using System.Security.Cryptography. 1.散列算法: 用来产生一些数据片段(例如消息或会话项)的散列值的算法.好的散列算法具有在输入数据中的更改可以更改结果散列值中每个比特的特性:因此,散列对于检测在诸如消息等大型信息对象中的任何变化很有用.此外,好的散列算法使得构造两个独立的有相同散列的输入不能通过计算方法实现. 典型的散列算法包括 M

Java 加密解密 对称加密算法 非对称加密算法 MD5 BASE64 AES RSA

[前言] 本文简单的介绍了加密技术相关概念,最后总结了java中现有的加密技术以及用法和样例 [最简单的加密] 1.简单的概念 明文:加密前的信息 密文:机密后的信息 算法:加密或解密的算法 密钥:算法使用的钥匙(读作miyao.正确应该是miyue,可是大家都读miyao) 2.简单的样例 将123456每位数字都加1后得到234567, 当中123456就是明文.234567就是密文.加密密钥就是1,加密算法是每位加 3.对称加密和非对称加密 以上为例. 123456-->234567的加密

公钥 私钥 数字签名 数字证书

经常会听到公钥和私钥的概念,今天来讨论一下我对公钥和私钥的理解. 公钥和私钥是非对称加密的一种,有别于对称加密中,双方都持有相同的密钥,非对称加密,加解密双方持有不同的密钥,公开给对方的密钥被称为公钥,自己保留的密钥 被称为私钥.由公钥加密的内容只有私钥能解开,反之,由私钥加密的内容只能被公钥解开. 那么,公钥和私钥的用处在哪里呢.首先来了解一下对称加密,对称加密双方都持有相同的密钥,只要得不到密钥就解不开密文,但这是建立在双方都互相信任的基础上, 如果两边都可能存在不信任,那么随便把密钥交给对

Mac和 iOS 下的对称和非对称加密算法的使用

http://zhan.renren.com/177188?gid=3602888498063658248&checked=truehttp://zhan.renren.com/177188?gid=3602888498063658247&checked=truehttp://zhan.renren.com/177188?gid=3602888498063658246&checked=truehttp://zhan.renren.com/177188?gid=36028884980

单向散列算法运算速度实测

测试环境:CentOS 6.4 X86_64位 VMWare虚拟机 1G RAM  (物理主机CPU i7-3770 3.4GHz) 测试代码(使用openssl的hash库): #include <iostream> #include <sstream> #include <string> #include <iomanip> #include <ctime> #include <stdio.h> using namespace s