梯度下降法和随机梯度下降法的区别

这几天在看《统计学习方法》这本书,发现 梯度下降法 在 感知机 等机器学习算法中有很重要的应用,所以就特别查了些资料。   

一.介绍

      梯度下降法(gradient descent)是求解无约束最优化问题的一种常用方法,有实现简单的优点。梯度下降法是迭代算法,每一步需要求解目标函数的梯度向量。

 二.应用场景

     1.给定许多组数据(xi, yi),x(向量)为输入,yi为输出。设计一个线性函数y=h(x)去拟合这些数据。

2.感知机:感知机(perceptron)为二类分类的线性分类模型。 输入为实例的特征向量,输出为实例的类别, 取+1 和 -1 二值。

下面分别对这两种应用场景进行分析。

1.对于第一种场景:

既然是线性函数,在此不妨设为 h(x) = w0*x0 + w1*x1。

此时我们遇到的问题就是如何确定w0和w1这两个参数,即w=(w0,w1)这个向量。

既然是拟合,则拟合效果可以用平方损失函数:E(w)=∑ [ h(x)- y ] ^2 / 2 来衡量。

其中w是权重二维向量,x是输入二维向量,x和y都是训练集的数据,即已知。

至于后面除于2只是为了之后的推导过程中对E求导时候可以消除系数,暂时可以不管。

   因此该问题变成了求E(w)最小值的无约束最优化问题

 2.对于第二种场景:

假设输入空间(特征向量)为x,输出空间为y = {+1, -1},由输入空间到输出空间的如下函数

f(x) = sign(w · x + b)       w∈Rn     其中 w 叫做权值或者权值向量, b叫做偏振。w · x 表示向量w和x的点积

感知机sign(w · x + b)的损失函数为  L(w, b) = -∑yi(w · xi + b)              x ∈M, M为误分类点集合。

因此该问题变成了求L(w, b)最小值的无约束最优化问题

三.梯度下降方法

梯度其实就是高数求导方法,对E这个公式针对每个维数(w0,w1)求偏导后的向量▽E(w)=(∂E/∂w0,∂E/∂w1)

1. 对于第一种场景

对E这个公式针对每个维数(w0,w1)求偏导后的向量▽E(w)=(∂E/∂w0,∂E/∂w1)

梯度为最陡峭上升的方向,对应的梯度下降的训练法则为: w=w-η▽E(w)     这里的η代表学习速率,决定梯度下降搜索中的步长 。

上式的w是向量,即可用将该式写成分量形式为:wi=wi-η*∂E/∂wi

现在关键就使计算∂E/∂wi:

推导过程很简单,书上写的很详细,这里只记录结论(其实就是对目标函数求导):

∂E/∂wi=∑(h(x)-y)*(xi)

这里的∑是对样本空间,即训练集进行一次遍历,耗费时间较大,可以使用梯度下降的随机近似:

2. 对于第二种场景

           感知机学习算法是误分类驱动的,具体采用随机梯度下降方法

▽wL(w, b) =   -∑yixi

bL(w, b) =   -∑yi

随机选取一个误分类点(xi,   yi), 对w, b进行更新:

w  <——   w - η * (-yixi)

b  <——    b - η * (-yi)                 式中η(0 < η <= 1)是步长,在统计学习中又称为学习率(learning rate)

   四.随机梯度下降的随机近似:

既然是随机近似,则顾名思义,肯定是用近似方法来改善梯度下降时候的时间复杂度问题。

正如上所说,在∂E/∂wi=∑(h(x)-y)*(xi) 的时候∑耗费了大量的时间,特别是在训练集庞大的时候。

所以肯定有人会猜想,如果把求和去掉如何,即变为∂E/∂wi=(h(x)-y)*(xi)。

幸运的是,猜想成立了。

只是要注意一下标准的梯度下降和随机梯度下降的区别:

    1.标准下降时在权值更新前汇总所有样例得到的标准梯度,随机下降则是通过考察每次训练实例来更新。

    2.对于步长 η的取值,标准梯度下降的η比随机梯度下降的大。

    因为标准梯度下降的是使用准确的梯度,理直气壮地走,随机梯度下降使用的是近似的梯度,就得小心翼翼地走,怕一不小心误入歧途南辕北辙了。

    3.当E(w)有多个局部极小值时,随机梯度反而更可能避免进入局部极小值中。

 四.代码及实例:

1. 对于第一种场景

         

 1 /*
 2  * 随机梯度下降实验:
 3  * 训练集输入为矩阵:
 4  * 1,4
 5  * 2,5
 6  * 5,1
 7  * 4,2
 8  * 输出结果为:
 9  * 19
10  * 26
11  * 19
12  * 20
13  * 需要参数为 w:
14  * ?
15  * ?
16  *
17  * 目标函数:y=w0*x0+w1*x1;
18  *
19  * */
20 #include<stdio.h>
21 #include <stdlib.h>
22 int main()
23 {
24     double matrix[4][2]={{1,4},{2,5},{5,1},{4,2}};
25     double result[4]={19,26,19,20};
26     double w[2]={0,0};//初始为零向量
27     double loss=10.0;
28     const double n = 0.01;        //步长
29     for(int i=0;i<100&&loss>0.001;i++)
30     {
31         double error_sum=0;
32         int j=i%4;
33         {
34             double h=0;
35             for(int k=0;k<2;k++)
36             {
37                 h+=matrix[j][k]*w[k];
38             }
39             error_sum = h - result[j];
40             for(int k=0;k<2;k++)
41             {
42                 w[k]-= n * (error_sum) * matrix[j][k];//这里是关键
43             }
44          }
45         printf("%lf,%lf\n",w[0],w[1]);
46         double loss=0;
47         for(int j=0;j<4;j++)
48         {
49             double sum=0;
50             for(int k=0;k<2;k++)
51             {
52                 sum += matrix[j][k] * w[k];
53         }
54         loss += (sum - result[j]) * (sum-result[j]);
55      }
56         printf("%lf\n",loss);
57     }
58
59     system("pause");
60     return 0;
61 }

结果可以得出  w0=3,w1=4。

1. 对于第二种场景

 1 /*
 2  * 基于感知机的随机梯度下降实验:  《统计学习方法》- p29-例2.1
 3  * 训练集输入为矩阵:
 4  * 3,3
 5  * 4,3
 6  * 1,1
 7  * 输出结果为(表示实例的分类):
 8  * 1
 9  * 1
10  * -1
11  * 需要参数为 w:
12  * ?
13  * ?
14  *
15  * 目标函数:y = w0 * x0 + w1 * x1 + b;
16  *
17  * */
18 #include<stdio.h>
19 #include <stdlib.h>
20 int main()
21 {
22     double x[3][2]={{3,3},{4,3},{1,1}};
23     double y[4]={1, 1, -1};
24     double w[2]={0,0};//初始为零向量
25     double b = 0;
26     int j;
27     const double n = 1;        //步长
28
29     while(1)
30     {
31         for(j=0;j<3;j++)
32         {
33             if(y[j] * (w[0] * x[j][0] + w[1] * x[j][1] + b) <= 0)
34                 break;
35         }
36         if(j < 3)
37         {
38             for(int k=0;k<2;k++)
39                 w[k] += n * y[j] * x[j][k];//这里是关键
40             b += n * y[j];
41          }
42          else
43             break;
44         printf("%d :%lf,%lf %lf\n", j, w[0], w[1], b);
45
46     }
47
48     system("pause");
49     return 0;
50 }

结果可以得出  w0=1,w1=1, b = -3 。

参考:

1.    http://blog.csdn.net/wuyanyi/article/details/8003946

2.    李航 统计学习方法

时间: 2024-10-24 11:45:06

梯度下降法和随机梯度下降法的区别的相关文章

NN优化方法对比:梯度下降、随机梯度下降和批量梯度下降

1.前言 这几种方法呢都是在求最优解中经常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中,都是围绕以下这个式子展开: 其中在上面的式子中hθ(x)代表,输入为x的时候的其当时θ参数下的输出值,与y相减则是一个相对误差,之后再平方乘以1/2,并且其中 注意到x可以一维变量,也可以是多维变量,实际上最常用的还是多维变量.我们知道曲面上方向导数的最大值的方向就代表了梯度的方向,因此我们在做梯度下降的时候,应该是沿着梯度的反方向进行权重的更新,可以有效的找到全局的最优解.这个θ的更新过程可以描

批量梯度下降与随机梯度下降

下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降(BGD)的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是要最小化风险函数,所以按每个参数theta的梯度负方向,来更新每个theta (3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数

梯度下降VS随机梯度下降

样本个数m,x为n维向量.h_theta(x) = theta^t * x梯度下降需要把m个样本全部带入计算,迭代一次计算量为m*n^2 随机梯度下降每次只使用一个样本,迭代一次计算量为n^2,当m很大的时候,随机梯度下降迭代一次的速度要远高于梯度下降

梯度下降、随机梯度下降、方差减小的梯度下降(matlab实现)

梯度下降代码: function [ theta, J_history ] = GradinentDecent( X, y, theta, alpha, num_iter ) m = length(y); J_history = zeros(20, 1); i = 0; temp = 0; for iter = 1:num_iter     temp = temp +1;     theta = theta - alpha / m * X' * (X*theta - y);     if tem

机器学习中梯度下降法和牛顿法的比较

在机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解.在逻辑斯蒂回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法.由于两种方法有些相似,我特地拿来简单地对比一下.下面的内容需要读者之前熟悉两种算法. 梯度下降法 梯度下降法用来求解目标函数的极值.这个极值是给定模型给定数据之后在参数空间中搜索找到的.迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha.梯度下降法通

梯度下降法和牛顿法

在机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解.在逻辑斯蒂回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法.由于两种方法有些相似,我特地拿来简单地对比一下.下面的内容需要读者之前熟悉两种算法. 梯度下降法 梯度下降法用来求解目标函数的极值.这个极值是给定模型给定数据之后在参数空间中搜索找到的.迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha.梯度下降法通

机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)

本文介绍了机器学习中基本的优化算法-梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有样本的特征向量组成的矩阵 x(i) 是第i个样本包含的所有特征组成的向量x(i)=(x(i)1,x(i)2...,x(i)n) y(i) 第i个样本的label,每个样本只有一个label,y(i)是标量(一个数值) hθ(x(i)) :拟合函数,机器学习中可以用多种类型的拟合函数 θ 是函数变量,

机器学习笔记 1 LMS和梯度下降(批梯度下降) 20170617

# 概念 LMS(least mean square):(最小均方法)通过最小化均方误差来求最佳参数的方法. GD(gradient descent) : (梯度下降法)一种参数更新法则.可以作为LMS的参数更新方法之一. The normal equations : (正则方程式,将在下一篇随笔中介绍)一种参数更新法则.也可以作为LMS的参数更新方法之一. 三者的联系和区别:LMS是一种机器学习算法.但是最小化均方误差的方法不唯一,采用GD或者正则方程式都是方法之一. # 准备样本  必须要先

神经网络与深度学习(2):梯度下降算法和随机梯度下降算法

本文总结自<Neural Networks and Deep Learning>第1章的部分内容. 使用梯度下降算法进行学习(Learning with gradient descent) 1. 目标 我们希望有一个算法,能让我们找到权重和偏置,以至于网络的输出y(x) 能够拟合所有的训练输入x. 2. 代价函数(cost function) 定义一个Cost function (loss function, objective function): 目标函数,如下: C: 被称为二次代价函数