Gz_mysql优化

目录

一、常见数据库的优化方式:    1

二、提高效率,反三范式:    1

第一范式:    1

第二范式:    1

第三范式:    1

反三范式设计:    2

三、定位慢查询。    3

四、索引的讲解:    6

五、explain工具的讲解    9

六、索引应用讲解:    10

七、并发处理的锁机制:    16

八、分表技术    17

九、分区技术    18

10、其他调优:    20

一、常见数据库的优化方式:

我们之前讲的静态化,memcache主要是少查询数据库,或者不查询数据库的。一个网站,必经要查询数据库,索引也要对数据库进行优化。

1、表的设计要符合三范式。

2、添加适当的索引,索引对查询速度影响很大,必须添加索引。主键索引,唯一索引,普通索引,全文索引

3、添加适当存储过程,触发器,事务等。

4、读写分离(主从数据库)

5、对sql语句的一些优化,(查询执行速度比较慢的sql语句)

6、分表分区

分表:把一张大表分成多张表。分区:把一张表里面的分配到不同的区域存储,

7、对mysql服务器硬件的升级操作。

二、提高效率,反三范式:

第一范式:

原子性:表里面的字段不能再分割,只要是关系型数据库,就天然的自动满足第一范式。

关系型数据库:(有行和列的概念)mysql,sql server,oracle,db2,infomix,sybase,postgresql

在设计时,先有库-》表-》字段-》具体记录(内容):在存储数据时,要设计字段。

非关系型数据库(泛指nosql数据库):memcache/redis/momgodb/等

第二范式:

一个表中没有完全相同的记录,通过一个主键即能解决。

第三范式:

表中不能存储冗余数据,

反三范式设计:

三、定位慢查询。

慢查询:找出在一个网站中,查询速度比较慢的语句,可以开启一个日志文件,记录查询速度比较慢的sql语句。在默认情况下,慢查询日志是关闭的,默认记录时间是超过10秒 的sql语句。

1、以记录慢查询的方式来启动mysql,

先关闭mysql,进入到mysql的安装目录。

关闭mysql服务:可以通过计算机-》管理->服务-》mysqld的服务名称,单击停止。

{mysql的安装目录}>bin/mysqld.exe --safe-mode --slow-query-log

通过慢查询日志定位执行效率较低的SQL语句。慢查询日志记录了所有执行时间超过long_query_time所设置的SQL语句。

执行:如下已经启动:

2、查看慢查询日志的存储路径。

开启了慢查询日志后,会建立一个慢查询日志文件。该日志文件保存在数据库的目录下,数据库的目录可以通过配置文件查看。

3、进程测试:

查看当前数据库下慢查询记录时间:

show variables like ‘long_query_time‘;


修改慢查询时间:

set long_query_time=2;

通过如下的一个函数来进行测试:

benchmark(count,expr)函数可以测试执行count次expr操作需要的时间

一般情况下,出现查询比较慢的语句,是没有添加索引导致的。

没有添加索引前:

添加索引之后:

四、索引的讲解:

建立的测试表:

create table user(

id int primary key auto_increment,

name varchar(32) not null default ‘‘,

age tinyint unsigned not null default 0,

email varchar(32) not null default ‘‘,

classid int not null default 1

)engine myisam charset utf8;

insert into user values(null,‘xiaogang‘,12,‘[email protected]‘,4),

(null,‘xiaohong‘,13,‘[email protected]‘,2),

(null,‘xiaolong‘,31,‘[email protected]‘,2),

(null,‘xiaofeng‘,22,‘[email protected]‘,3),

(null,‘xiaogui‘,42,‘[email protected]‘,3);

创建一个班级表:

create table class(

id int not null default 0,

classname varchar(32) not null default ‘‘

)engine myisam charset utf8;

insert into class values(1,‘java‘),(2,‘.net‘),(3,‘php‘),(4,‘c++‘),(5,‘ios‘);

1、主键索引

可以在建立表的添加create table emp(id int primary key)

可以在建立完表之后,添加:alter table tablename add primary key(列1,列2)

主键索引的特点:

(1)一个表中最多只有一个主键索引

(2)一个主键索引可以指向多个列

(3)主键索引的列,不能有重复的值,也不能有null

(4)主键索引的效率高。

2、唯一索引

可以在建立表的时候添加:create table emp(name varchar(32) unique)

在建完表之后,添加:

alter table tablename add unique [索引名](列名)

唯一索引的特点:

(1)一个表中可以有多个唯一索引

(2)一个唯一索引可以指向多个列 ,

比如alter table tablename add unique [索引名](列1,列2)

(3)如果在唯一索引上,没有指定not null,则该列可以为空,同时可以有多个null,

(4)唯一索引的效率较高。

3、普通索引

使用普通索引主要是提高查询效率

添加alter table tablename add index [索引名](列1,列3)

4、全文索引

mysql自带的全文索引mysql5.5不支持中文,支持英文,同时要求表的存储引擎是myisam。如果希望支持中文,有两个方案,

(1)使用aphinx中文版coreseek (来替代全文索引)

(2)插件mysqlcft。

5、查看索引

(1)show index from 表名

(2)show indexes from 表名

(3)show keys from 表名

(4)desc 表名

6、删除索引

(1)主键索引的删除:

alter table tablename drop primary key;要注意:在删除主键索引时,要首先去掉auto_increment属性。

(2)唯一索引的删除

alter table tablename drop index 唯一索引的名字

(3)普通索引的删除:

alter table tablename drop index 普通索引的名字

7、添加索引主要的问题:

(1)较频繁的作为查询条件字段应该创建索引

select * from emp where empno = 1

唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件

select * from emp where sex = ‘男‘

更新非常频繁的字段不适合创建索引

select * from emp where logincount = 1

(2)不会出现在WHERE子句中字段不该创建索

索引是由代价的,虽然是查询速度提高了,但是,会影响增该删的效率。而且索引文件会占用空间。

五、explain工具的讲解

该工具能够分析sql执行效率,但是并不执行sql语句。主要是查看sql语句是否用到索引。

语法:explain sql语句\G 或 desc sql语句\G

使用索引时:

没有使用索引时:

explain工具的参数说明:

会产生如下信息:
select_type:表示查询的类型。
table:输出结果集的表
type:表示表的连接类型
possible_keys:表示查询时,可能使用的索引
key:表示实际使用的索引
key_len:索引字段的长度
rows:扫描出的行数(估算的行数)
Extra:执行情况的描述和说明

六、索引应用讲解:

1、对于创建的多列(复合)索引,只要查询条件使用了最左边的列,索引一般就会被使用。

mysql> alter table user add index (name,email);

Query OK, 5 rows affected (0.08 sec)

Records: 5 Duplicates: 0 Warnings: 0

2、对于使用like的查询,查询如果是"%XXX",不会使用到索引,‘XXX%‘会使用到索引。

要注意:在有些情况下,还是会用到like查询,比如通过歌词搜索歌名,通过剧情搜索电影名称。借助于工具,sphinx里面的coreseek软件。

3、如果条件中有or,则要求or的索引字段都必须有索引,否则不能用到索引。

该email添加索引后,在测试,会用到索引

4、如果列类型是字符串,一定要在条件中将数据使用引号引用起来,否则不使用索引。

5、优化group by语句

默认情况下, mysql对所有的group by col1,col2进行排序。这与在查询中指定order by col1,col2类型,如果查询中包括group by 但用户想要避免排序结果的消耗,则可以使用order by null禁止排序。

6、当取出的数据量超过表中数据的20%,优化器就不会使用索引,而是全表扫描。

扫描的行数太多了,优化器认为全表扫描比索引来的块。

7、查看索引的使用情况

大家可以注意:
handler_read_key:这个值越高越好,越高表示使用索引查询到的次数。

handler_read_rnd_next:这个值越高,说明查询低效。

8、对应大批量插入数据,需要注意的:

大批量插入数据(MySql管理员) 了解
对于MyISAM:

先禁用索引:
alter table table_name disable keys;
loading data//insert语句; 执行插入语句

执行完成插入语句后,开启索引,统一添加索引。
alter table table_name enable keys;

对于Innodb:
1,将要导入的数据按照主键排序
2,set unique_checks=0,关闭唯一性校验。
3,set autocommit=0,关闭自动提交。

七、并发处理的锁机制:

比如执行如下操作:

(1)从数据库中取出id值,

(2)进行加1操作。

(3)修改完成后,再保存到数据库中。

比如原来 id的值为100,==》101

以上步骤执行100次,最后变成200

有两个用户同时执行的话。

a用户:

100

101

b用户:

100

101

通过锁机制来进行解决,

锁机制:在执行时,只有一个用户获得锁,其他用户处于阻塞状态,需要等待解锁。

mysql 的锁有以下几种形式:

表级锁:开销小,加锁快,发生锁冲突的概率最高,并发度最低。myisam引擎属于这种类型。

行级锁:开销大,加锁慢,发生锁冲突的概率最低,并发度也最高。innodb属于这种类型。

1、表锁的演示;

对myisam表的读操作(加读锁),不会阻塞其他进程对同一表的读请求,但会阻塞对同一表的写请求。只有当读锁释放后,才会执行其他进程的操作。

表添加读锁后,其他进程对该表只能查询操作,修改时会被阻塞。

当前进程,能够执行查询操作,不能执行修改操作。不能对没有锁定的表进行操作。

锁表的语法:

lock table 表名 read|write

也可以锁定多个表,语法是:lock table 表1 read|wirte,表2 read|wirte

对myisam表的写操作(加写锁),会阻塞其他进程对锁定表的任何操作,不能读写,

表加写锁后,则只有当前进程对锁定的表,可以执行任何操作。其他进程的操作会被阻塞。

2、行锁的演示

innodb存储引擎是通过给索引上的索引项加锁来实现的,这就意味着:只有通过索引条件检索数据,innodb才会使用行级锁,否则,innodb使用表锁。

行锁的语法:

begin

sql语句

commit

开启行锁后,当前进程在针对某条记录执行操作时,其他进程不能操作和当前进程相同id的记录。

php里面有文件锁,在实际的项目中多数使用文件锁,因为表锁,会阻塞,当对一些表添加写锁后,其他进程就不能操作了。这样会阻塞整个网站,会拖慢网站的速度。

类似的面试题:

一件商品,库存量还有一件,这时有两个用户同时请求下订单,如何防止都下订单成功,却没有货发。

八、分表技术

分表:把一个大表分成几个小表:

垂直分割:

在dedecms里面,垂直分割:

在一个数据库中想要存储各种数据,比如说文章数据,电影,音乐,商品数据,

内容主表+附加表:

内容主表:存储各种数据的一些公共信息,比如数据的名称,添加时间等,

可以使用多个附加表,附加表存储一些数据的独特的信息。

主要原因:是内容主表里面的数据访问比较频繁。

水平分割:

通过id取模

九、分区技术

就是把一个表存储到磁盘不同区域,仍然是一张表。

1、基本的概念:

mysql5.1后有4种分区类型:

(1)Range(范围)–这种模式允许将数据划分不同范围。例如可以将一个表通过年份划分成若干个分区。

(2)List(预定义列表)–这种模式允许系统通过预定义的列表的值来对数据进行分割

(3)Hash(哈希)–这中模式允许通过对表的一个或多个列的Hash Key进行计算,最后通过这个Hash码不同数值对应的数据区域进行分区。例如可以建立一个对表主键进行分区的表。

(4)Key(键值)-上面Hash模式的一种延伸,这里的Hash Key是MySQL系统产生的。

2 range分区:

假如你创建了一个如下的表,该表保存有20家超市的职员记录,这20家超市的编号从1到20.如果你想将其分成4个小分区,可以采用range分区,创建的数据表如下。

创建range分区语法:
create table emp(

id int not null,

name varchar(32) not null default ‘‘ comment ‘职员的名称‘,

store_id int not null comment ‘超市的编号范围是1-20‘

)engine myisam charset utf8

partition by range(store_id)(

partition p0 values less than(6), //是store_id的值小于6的存储区域。

partition p1 values less than(11), //是store_id的值大于等于6小于11的存储区域。

partition p2 values less than(16),

partition p3 values less than(21)

)

insert into emp values(1,‘杨过‘,1)--à数据是存储到p0区

insert into emp values(23,‘小龙女‘,15)--à数据是存储到p2区

insert into emp values(100,‘李莫愁‘,11)=à数据是存储到p2区。

测试使用取出数据时是否用到分区:

在取出数据时,条件中必须partition by range(store_id),range里面的字段。

3、list分区与range分区有类似的地方,

例子:假如你创建一个如下的一个表,该表保存有20家超市的职员记录,这20家超市的编号从1到20.而这20家超市分布在4个有经销权的地区,如下表所示:

create table emp(

id int not null,

name varchar(32) not null default ‘‘,

store_id int not null

)

partition by list(store_id)(

partition p0 values in(5,6,7,8),

partition p1 values in(11,3,12,11),

partition p2 values in(16),

partition p3 values in(21)

)

注意:在使用分区时,where后面的字段必须是分区字段,才能使用到分区。

4、分区表的限制;

(1)只能对数据表的整型列进行分区,或者数据列可以通过分区函数转化成整型列

(2)最大分区数目不能超过1024

(3)如果含有唯一索引或者主键,则分区列必须包含在所有的唯一索引或者主键在内

(4)按日期进行分区很非常适合,因为很多日期函数可以用。但是对于字符串来说合适的分区函数不太多 。

10、其他调优:

1、选择合适的存储引擎 (myisam innodb)

  • MyISAM:默认的MySQL存储引擎。如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性要求不是很高。其优势是访问的速度快。(尤其适合论坛的帖子表)
  • InnoDB:提供了具有提交、回滚和崩溃恢复能力的事务安全。但是对比MyISAM,写的处理效率差一些并且会占用更多的磁盘空间(如果对安全要求高,则使用innodb)。[账户,积分]
  • Memory/heap [一些访问频繁,变化频繁,又没有必要入库的数据 :比如用户在线状态]
  • 说明: memory表的数据都在内存中,因此操作速度快,但是缺少是当mysql重启后,数据丢失,但表的结构在.
  • 注:从mysql5.5.x开始,默认的存储引擎变更为innodb,innodb是为处理巨大数据量时拥有最大性能而设计的。它的 cpu效率可能是任何其他基于磁盘的关系数据库引擎所不能匹敌的。

2、数据类型的选择

(1)在精度要求高的应用中,建议使用定点数来存储数值,以保证结果的准确性。decimal 不要用float

(2)要用于存储手机号,哪个类型比较合适。假如我们要用char(11),如果字符集是utf8 则占用多少个字节。11*3==33,如果是gbk字符集则占用11*2=22个字节,

如果用bigint型存储,则占用8个字节,

(3)如果要存储ip地址。假如用char(15)è占用很多字节,能否用整型来存储呢?

可以通过一个函数,把ip地址转换成整数。可以使用int来存储

inet_aton():把ip地址转换成整数。

inet_ntoa():把整数转换成ip地址。

取出时:

(4)根据需求选择最小整数类型。比如用户在线状态:离线,在线,离开,忙碌,隐式等,可以采用0,1,2,3,5来表示,没有必要用char()或varchar()型来存储字符串。

3、myisam表的定时维护

对于myisam 存储引擎而言,需要定时执行optimize table 表名,通过optimize table语句可以消除删除和更新造成的磁盘碎片,从而减少空间的浪费。

create table temp2( id int) engine=MyISAM;

insert into temp2 values(1);

在之前数据的容量:

语法格式:optimize table 表名:

清理完成碎片之后。

时间: 2024-08-07 21:04:15

Gz_mysql优化的相关文章

iOS开发——项目实战总结&UITableView性能优化与卡顿问题

UITableView性能优化与卡顿问题 1.最常用的就是cell的重用, 注册重用标识符 如果不重用cell时,每当一个cell显示到屏幕上时,就会重新创建一个新的cell 如果有很多数据的时候,就会堆积很多cell.如果重用cell,为cell创建一个ID 每当需要显示cell 的时候,都会先去缓冲池中寻找可循环利用的cell,如果没有再重新创建cell 2.避免cell的重新布局 cell的布局填充等操作 比较耗时,一般创建时就布局好 如可以将cell单独放到一个自定义类,初始化时就布局好

Java性能优化之JVM GC(垃圾回收机制)

Java的性能优化,整理出一篇文章,供以后温故知新. JVM GC(垃圾回收机制) 在学习Java GC 之前,我们需要记住一个单词:stop-the-world .它会在任何一种GC算法中发生.stop-the-world 意味着JVM因为需要执行GC而停止了应用程序的执行.当stop-the-world 发生时,除GC所需的线程外,所有的线程都进入等待状态,直到GC任务完成.GC优化很多时候就是减少stop-the-world 的发生. JVM GC回收哪个区域内的垃圾? 需要注意的是,JV

MySQL 索引优化原则

一.索引优化原则 1.最左前缀匹配原则,联合索引,mysql会从做向右匹配直到遇到范围查询(>.<.between.like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整. 2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优

sql优化

1.all: 全表扫描,遍历全表找到匹配的行 index:索引全扫描,遍历整个索引来查询匹配的行 range:索引范围扫描,常见于<,>,>=,between等操作符 ref: 使用非唯一索引扫描或唯一索引的前缀扫描,返回匹配某个单独值的记录行 eq_ref:类似ref,区别就是使用的索引是唯一索引,对于每个索引键值,表中只有一条记录匹配.简单来说,就是多表连接中使用primary key或者unique index 作为关联条件 const/system:单表中最多有一个匹配行,查询起

试试SQLSERVER2014的内存优化表

原文:试试SQLSERVER2014的内存优化表 试试SQLSERVER2014的内存优化表 SQL Server 2014中的内存引擎(代号为Hekaton)将OLTP提升到了新的高度. 现在,存储引擎已整合进当前的数据库管理系统,而使用先进内存技术来支持大规模OLTP工作负载. 就算如此,要利用此新功能,数据库必须包含"内存优化"文件组和表 即所配置的文件组和表使用Hekaton技术. 幸运的是,SQL Server 2014使这一过程变得非常简单直接. 要说明其工作原理,我们来创

Linux性能优化之磁盘优化(三)

前言 关于本章内容,设计的东西比较多.这里会有关于文件系统.磁盘.CPU等方面的知识,以及涉及到关于这方面的性能排查等. 术语 文件系统通过缓存和缓冲以及异步I/O等手段来缓和磁盘的延时对应用程序的影响.为了更详细的了解文件系统,以下就简单介绍一些相关术语: 文件系统:一种把数据组织成文件和目录的存储方式,提供了基于文件的存取接口,并通过文件权限控制访问.另外,一些表示设备.套接字和管道的特殊文件类型,以及包含文件访问时间戳的元数据. 文件系统缓存:主存(通常是DRAM) 的一块区域,用来缓存文

一个配置表优化的想法

今天下班在班车上想了一个关于配置表存储的小优化,起因是早上的时候发现了一个bug,这个bug是由于在运行时动态更改了一个列表配置导致的. 其实关于这种运行时"偷偷"改配置的问题我之前也有考虑过,这种应该是一不小心就会写出的,这不终于都出了一个. 至于如何预防这种问题,我认为在python里面似乎也没有什么好的解决方法,因为它不像c++有const语义,但有一个稍尽人事的预防措施就是把列表型的配置读成元组(tuple).而由此衍生出的一个想法便是:把配置表中所有的列表型配置都读成共享的元

web单机优化

又得开始写博客了,目测又要一周一篇了,当然了这不算python跟前端的,个人喜欢notepad++可惜不能放图片,word什么的太讨厌了 为什么要单机优化呢,很简单,因为不论以后是各类集群也好,物理机虚拟机也好,只有将个人优势发挥到最大才能提升整体的最低限度,因为木桶原理嘛:再一个,穷啊,玩linux那就是得优化,极尽的压榨操作系统的性能.集群什么的都是从单机演化出来的,so,优化好单机是你继续下一步的初始条件 我们从一个请求连接的总流程来看一下我们可优化的点(运维角度) 其实这中间的每一个步骤

前端优化

代码层面:避免使用css表达式,避免使用高级选择器,通配选择器. 缓存利用:缓存Ajax,使用CDN,使用外部js和css文件以便缓存,添加Expires头,服务端配置Etag,减少DNS查找等 请求数量:合并样式和脚本,使用css图片精灵(sprite),初始首屏之外的图片资源按需加载,静态资源延迟加载(懒加载). 请求带宽:压缩文件,开启GZIP, 代码层面的优化 用 hash-table 来优化查找 少用全局变量 用 innerHTML 代替 DOM 操作,减少 DOM 操作次数,优化 j