扩展欧几里德算法解二元一次方程之B - 青蛙的约会

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

题目描述: 有一个首尾相连的环形数轴,规定一个原点0,两只青蛙的起跳位置分别问x和y,两个青蛙每跳一次所花时间都是1秒,跳一次的前进距离分别问m和n,      问两只青蛙是否会相遇,相遇所花的最短时间是多少

解题思路:假设k圈之后两个青蛙相遇,这时候都跳了T步     那么(X+TM)-(Y+TN) = KL;(K = 0, 1, 2, 3, ……, n);     化简为(N-M)*T + L*K = X - Y;     设a = N - M;       b = L;      c = X - Y:    相当于解方程a*x + b*y = c;    如果gc = gcd(a, b) 是c的约数,那么这个方程有解,否则无解    一组解为x0 = x*c/gc;  y0 = y*c/gc;    通解为x = x0 + b/gc*t; y = y0-a*gc*t;

上代码:
#include <stdio.h>
#define LL long long
LL exgcd(LL a, LL b, LL &x, LL &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    else
    {
        LL gc = exgcd(b, a%b, x, y);
        LL tmp = x;
        x = y;
        y = tmp - a/b*y;
        return gc;
    }
}
int main()
{
    LL X, Y, M, N, L;
    LL x, y;
    while(~scanf("%lld%lld%lld%lld%lld", &X, &Y, &M, &N, &L))
    {
        LL a = N - M;
        LL b = L;
        LL c = X - Y;
        LL gc = exgcd(a, b, x, y);
        if(c%gc)
            printf("Impossible\n");
        else
        {
            c /= gc;
            LL t = (c*x%b+b)%b;
            printf("%lld\n", t);
        }
    }
    return 0;
}
时间: 2024-10-13 06:31:58

扩展欧几里德算法解二元一次方程之B - 青蛙的约会的相关文章

扩展欧几里德算法详解

扩展欧几里德算法 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了,这就是欧几里德算法,用 C++ 语言描述如下: 由于是用递归写的,所以看起来很简洁,也很好记忆.那么什么是扩

POJ-1061 青蛙的约会-数论扩展欧几里德算法入门及推导

Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这

extended_gcd(扩展欧几里德算法) 青蛙的约会

#include <stdio.h> #include <math.h> long long gcd(long long x,long long y) { if(y==0) { return x; } return gcd(y,x%y); } void extended_gcd(long long a,long long b,long long &x,long long &y) { long long t; if(b==0) { x = 1; y = 0; retu

poj2115-C Looooops(扩展欧几里德算法)

本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循环几次才会结束. 比如:当k=4时,存储的数 i 在0-15之间循环.(本题默认为无符号) 若在有限次内结束,则输出循环次数. 否则输出死循环.二,思路: 本题利用扩展欧几里德算法求线性同余方程,设循环次数为 x ,则解方程 (A + C*x) % 2^k = B ;求出最小正整数 x. 1,化简方

【zz】欧几里德与扩展欧几里德算法相关

关于欧几里德与扩展欧几里德算法在此附上我自学的时用的网站:感谢:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 这里我会结合该大牛的成果以及自己的收获总结一下: 欧几里德算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 证明: a可以表示成a = kb +

扩展欧几里德算法

文章来源:http://blog.csdn.net/zhjchengfeng5/article/details/7786595 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了

欧几里德与扩展欧几里德算法(转)

欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a

欧几里德与扩展欧几里德算法

转自网上大牛博客,讲的浅显易懂. 原文地址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有

扩展欧几里德算法及其证明

扩展欧几里德算法: 已知a, b求解一组x,y,使它们满足等式: ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理). 扩展欧几里德常用在求解模线性方程及方程组中. 证明: ax+by=gcd(a,b); 1. (1) a = 0,ax+by = gcd(a,b) = gcd(0,b) = b, 此时x = 0(此时x的值是任意的),y = 1: (2)b = 0, ax + by = gcd(a,b) = gcd(a,0) = a, 此时x = 1,y = 0(此时y