Matlab学习 之 linear regression

本文练习的是最简单的二元线性回归。

题目

本题给出的是50个数据样本点,其中x为这50个小朋友到的年龄,年龄为2岁到8岁,年龄可有小数形式呈现。Y为这50个小朋友对应的身高,当然也是小数形式表示的。现在的问题是要根据这50个训练样本,估计出3.5岁和7岁时小孩子的身高。通过画出训练样本点的分布凭直觉可以发现这是一个典型的线性回归问题。

matlab函数介绍

legend:

比如legend(‘Training data’, ‘Linear regression’),它表示的是标出图像中各曲线标志所代表的意义,这里图像的第一条曲线(其实是离散的点)表示的是训练样本数据,第二条曲线(其实是一条直线)表示的是回归曲线。

hold on, hold off:

hold on指在前一幅图的情况下打开画纸,允许在上面继续画曲线。hold off指关闭前一副画的画纸。

linspace:

比如linspace(-3, 3, 100)指的是给出-3到3之间的100个数,均匀的选取,即线性的选取。

logspace:

比如logspace(-2, 2, 15),指的是在10^(-2)到10^(2)之间选取15个数,这些数按照指数大小来选取,即指数部分是均匀选取的,但是由于都取了10为底的指数,所以最终是服从指数分布选取的。

程序代码及注释

采用normal equations方法求解:

x = load(‘ex2x.dat‘);
y = load(‘ex2y.dat‘);
plot(x,y,‘*‘)
xlabel(‘height‘)
ylabel(‘age‘)
sz = size(x)
x = [ones(sz),x];
w = inv(x‘*x)*x‘*y
hold on
%plot(x,0.0639*x+0.7502)
plot(x(:,2),0.0639*x(:,2)+0.7502)%更正后的代码

采用gradient descend过程求解:

% Exercise 2 Linear Regression

% Data is roughly based on 2000 CDC growth figures
% for boys
%
% x refers to a boy‘s age
% y is a boy‘s height in meters
%

clear all; close all; clc
x = load(‘ex2x.dat‘); y = load(‘ex2y.dat‘);

m = length(y); % number of training examples

% Plot the training data
figure; % open a new figure window
plot(x, y, ‘o‘);
ylabel(‘Height in meters‘)
xlabel(‘Age in years‘)

% Gradient descent
x = [ones(m, 1) x]; % Add a column of ones to x
theta = zeros(size(x(1,:)))‘; % initialize fitting parameters
MAX_ITR = 1500;
alpha = 0.07;

for num_iterations = 1:MAX_ITR
    % This is a vectorized version of the
    % gradient descent update formula
    % It‘s also fine to use the summation formula from the videos

    % Here is the gradient
    grad = (1/m).* x‘ * ((x * theta) - y);

    % Here is the actual update
    theta = theta - alpha .* grad;

    % Sequential update: The wrong way to do gradient descent
    % grad1 = (1/m).* x(:,1)‘ * ((x * theta) - y);
    % theta(1) = theta(1) + alpha*grad1;
    % grad2 = (1/m).* x(:,2)‘ * ((x * theta) - y);
    % theta(2) = theta(2) + alpha*grad2;
end
% print theta to screen
theta

% Plot the linear fit
hold on; % keep previous plot visible
plot(x(:,2), x*theta, ‘-‘)
legend(‘Training data‘, ‘Linear regression‘)%标出图像中各曲线标志所代表的意义
hold off % don‘t overlay any more plots on this figure,指关掉前面的那幅图

% Closed form solution for reference
% You will learn about this method in future videos
exact_theta = (x‘ * x)\x‘ * y

% Predict values for age 3.5 and 7
predict1 = [1, 3.5] *theta
predict2 = [1, 7] * theta

% Calculate J matrix

% Grid over which we will calculate J
theta0_vals = linspace(-3, 3, 100);
theta1_vals = linspace(-1, 1, 100);

% initialize J_vals to a matrix of 0‘s
J_vals = zeros(length(theta0_vals), length(theta1_vals));

for i = 1:length(theta0_vals)
      for j = 1:length(theta1_vals)
      t = [theta0_vals(i); theta1_vals(j)];
      J_vals(i,j) = (0.5/m) .* (x * t - y)‘ * (x * t - y);
    end
end

% Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals‘;
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel(‘\theta_0‘); ylabel(‘\theta_1‘);

% Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 2, 15))%画出等高线
xlabel(‘\theta_0‘); ylabel(‘\theta_1‘);%类似于转义字符,但是最多只能是到参数0~9

实验结果

训练样本散点和回归曲线预测图:

损失函数与参数之间的曲面图:

损失函数的等高线图:

时间: 2024-10-15 13:20:45

Matlab学习 之 linear regression的相关文章

Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归.多参数线性回归和 逻辑回归的总结版.旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍. 本讲内容: Matlab 实现各种回归函数 ========================= 基本模型 Y=θ0+θ1X1型---线性回归(直线拟合) 解决

ufldl学习笔记与编程作业:Linear Regression(线性回归)

ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说.不必深究其它机器学习的算法.能够直接来学dl. 于是近期就開始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/ 从一个最简单的线性回归,能够

深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression

1 前言 Andrew Ng的UFLDL在2014年9月底更新了! 对于开始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial增加了Convolutional Neural Network的内容,了解的童鞋都知道CNN在Computer Vision的重大影响.并且从新编排了内容及exercises. 新的UFLDL网址为: http://ufldl.stanford.edu/tutorial/ 2 Linear Regression

【模式识别与机器学习】——PART2 机器学习——统计学习基础——Regularized Linear Regression

来源:https://www.cnblogs.com/jianxinzhou/p/4083921.html 1. The Problem of Overfitting (1) 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图.如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型.我们看看这些数据,很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓.因此线性回归并没有很好拟合训练数据. 我们把此类情况称为欠拟合(underfit

Andrew Ng Machine Learning 专题【Linear Regression】

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 3: Logistic Regression & Regularization 笔记:http://blog.csdn.net/ironyoung/ar

Spark MLlib Linear Regression线性回归算法

1.Spark MLlib Linear Regression线性回归算法 1.1 线性回归算法 1.1.1 基础理论 在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合. 回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间

Machine learning with python - Linear Regression

Machine learning with python Linear Regression 数据来自 cs229  Problem Set 1 (pdf) Data: q1x.dat, q1y.dat, q2x.dat, q2y.dat PS1 Solution (pdf) 从左上往右下 batchGradientDescent的cost随迭代次数的增加而下降,和收敛结果 stochasticGradientDescent的cost随迭代次数的增加而下降,和收敛结果 normalEquatio

Programming Assignment 1: Linear Regression

Warm-up Exercise Follow the instruction, type the code in warmUpExercise.m file: A = eye(5); Computing Cost (for One Variable) By the formula for cost function (for One Variable): J(θ0, θ1) = 1/(2m)*∑i=1~m(hθ(x(i)-y(i))2 We can implement it in comput

Machine_learning_cs229线性回归 Linear regression(2)

这篇博客针对的AndrewNg在公开课中未讲到的,线性回归梯度下降的学习率进行讨论,并且结合例子讨论梯度下降初值的问题. 线性回归梯度下降中的学习率 上一篇博客中我们推导了线性回归,并且用梯度下降来求解线性回归中的参数.但是我们并没有考虑到学习率的问题. 我们还是沿用之前对于线性回归形象的理解:你站在山顶,环顾四周,寻找一个下山最快的方向走一小步,然后再次环顾四周寻找一个下山最快的方向走一小步,在多次迭代之后就会走到最低点.那么在这个理解中,学习率其实是什么呢?学习率就是你走的步子有多长. 所以