BST树、B树、B+树、B*树

1. BST树

即二叉搜索树:

1.所有非叶子结点至多拥有两个儿子(Left和Right);

2.所有结点存储一个关键字;

3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

如:

B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字。

如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销。

如:

  但B树在经过多次插入与删除后,有可能导致不同的结构:

  右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题。

  实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略。

2. B树

注意:B树和B-树是同一种树,只不过英语中B-tree被中国人翻译成了B-树,让人以为B树和B-树是两种树,实际上,两者就是同一种树!!!

B树是一种多路搜索树(并不是二叉的):

1.定义任意非叶子结点最多只有M个儿子;且M>2;

2.根结点的儿子数为[2, M];

3.除根结点以外的非叶子结点的儿子数为[M/2, M];

4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

5.非叶子结点的关键字个数=指向儿子的指针个数-1;

6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];

7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的

子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

8.所有叶子结点位于同一层;

如:(M=3)

B树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点。

B树的特性:

1.关键字集合分布在整颗树中;

2.任何一个关键字出现且只出现在一个结点中;

3.搜索有可能在非叶子结点结束;

4.其搜索性能等价于在关键字全集内做一次二分查找;

5.自动层次控制;

由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最低搜索性能为:

其中,M为设定的非叶子结点最多子树个数,N为关键字总数。

所以B树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题。

由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并。

3. B+树

B+树是B树的变体,也是一种多路搜索树:

1.其定义基本与B树同,除了:

2.非叶子结点的子树指针与关键字个数相同;

3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B树是开区间);

5.为所有叶子结点增加一个链指针;

6.所有关键字都在叶子结点出现;

如:(M=3)

  B+的搜索与B树也基本相同,区别是B+树只有达到叶子结点才命中(B树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找。

  

B+的特性:

1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

2.不可能在非叶子结点命中;

3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

4.更适合文件索引系统;

4. B*树

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针。

  B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2)。

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针。

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针。

所以,B*树分配新结点的概率比B+树要低,空间使用率更高。

小结

BST树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;

B树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

B+树:在B树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3。

时间: 2024-10-13 02:33:29

BST树、B树、B+树、B*树的相关文章

【BZOJ】1146: [CTSC2008]网络管理Network(树链剖分+线段树套平衡树+二分 / dfs序+树状数组+主席树)

第一种做法(时间太感人): 这题我真的逗了,调了一下午,疯狂造数据,始终找不到错. 后来发现自己sb了,更新那里没有打id,直接套上u了.我.... 调了一下午啊!一下午的时光啊!本来说好中午A掉去学习第二种做法,噗 好吧,现在第一种做法是hld+seg+bst+二分,常数巨大,log^4级别,目前只会这种. 树剖后仍然用线段树维护dfs序区间,然后在每个区间建一颗平衡树,我用treap,(这题找最大啊,,,囧,并且要注意,这里的rank是比他大的数量,so,我们在二分时判断要判断一个范围,即要

B树、B+树、红黑树、AVL树比较

B树是为了提高磁盘或外部存储设备查找效率而产生的一种多路平衡查找树. B+树为B树的变形结构,用于大多数数据库或文件系统的存储而设计. B树相对于红黑树的区别 在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下的情况.为什么会出现这样的情况,我们知道要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写.磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读

AVL树,红黑树,B-B+树,Trie树原理和应用

前言:本文章来源于我在知乎上回答的一个问题 AVL树,红黑树,B树,B+树,Trie树都分别应用在哪些现实场景中? 看完后您可能会了解到这些数据结构大致的原理及为什么用在这些场景,文章并不涉及具体操作(如插入删除等等) 目录 AVL树 AVL树原理与应用 红黑树 红黑树原理与应用 B/B+树 B/B+树原理与应用 Trie树 Trie树原理与应用 AVL树 简介: AVL树是最早的自平衡二叉树,在早期应用还相对来说比较广,后期由于旋转次数过多而被红黑树等结构取代(二者都是用来搜索的),AVL树内

BZOJ 2243:染色(树链剖分+区间合并线段树)

[SDOI2011]染色Description给定一棵有n个节点的无根树和m个操作,操作有2类:1.将节点a到节点b路径上所有点都染成颜色c:2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”.“222”和“1”.请你写一个程序依次完成这m个操作.Input第一行包含2个整数n和m,分别表示节点数和操作数:第二行包含n个正整数表示n个节点的初始颜色下面 行每行包含两个整数x和y,表示x和y之间有一条无向边.下面 行每行描述一个操作:“C

BZOJ 2243: [SDOI2011]染色 树链剖分 倍增lca 线段树

2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=2243 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”.“222”和“1”. 请你写

【Hihocoder 1167】 高等理论计算机科学 (树链的交,线段树或树状数组维护区间和)

[题意] 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 少女幽香这几天正在学习高等理论计算机科学,然而她什么也没有学会,非常痛苦.所以她出去晃了一晃,做起了一些没什么意义的事情来放松自己.门前有一颗n个节点树,幽香发现这个树上有n个小精灵.然而这些小精灵都比较害羞,只会在一条特定的路径上活动.第i个小精灵会在ai到bi的路径上活动.两个小精灵是朋友,当且仅当它们的路径是有公共点的.于是幽香想要知道,有多少对小精灵a和b,a和b是朋友呢?其中a不等于b,a,b和b,

POJ 1804 Brainman(5种解法,好题,【暴力】,【归并排序】,【线段树单点更新】,【树状数组】,【平衡树】)

Brainman Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10575   Accepted: 5489 Description BackgroundRaymond Babbitt drives his brother Charlie mad. Recently Raymond counted 246 toothpicks spilled all over the floor in an instant just b

Java实现二叉搜索树的添加,前序、后序、中序及层序遍历,求树的节点数,求树的最大值、最小值,查找等操作

什么也不说了,直接上代码. 首先是节点类,大家都懂得 /** * 二叉树的节点类 * * @author HeYufan * * @param <T> */ class Node<T extends Comparable<? super T>> { /** * 节点储存的值 */ private T data; /** * 左子节点 */ private Node<T> leftNode; /** * 右子节点 */ private Node<T>

HDU 4417 Super Mario ( 超级马里奥 + 主席树 + 线段树/树状数组离线处理 + 划分树 )

HDU 4417 - Super Mario ( 主席树 + 线段树/树状数组离线处理 + 划分树 ) 这道题有很多种做法,我先学习的是主席树.后面陆续补上线段树离线和划分树 题目大意就是给定一个区间给定一个数列,每次要求你查询区间[L,R]内不超过K的数的数量 主席树做法: 最基本的是静态第k大,这里是求静态的 <= K,差不多,在Query操作里面需要修改修改 先建立size棵主席树,然后询问的时候统计的是 第R棵主席树中[1,K]的数量 - 第L-1棵主席树中[1,K]的数量 注意这里下标

B树、B+树、红黑树、AVL树

定义及概念 B树 二叉树的深度较大,在查找时会造成I/O读写频繁,查询效率低下,所以引入了多叉树的结构,也就是B树.阶为M的B树具有以下性质: 1.根节点在不为叶子节点的情况下儿子数为 2 ~ M2.除根结点以外的非叶子结点的儿子数为 M/2(向上取整) ~ M3.拥有 K 个孩子的非叶子节点包含 k-1 个keys(关键字),且递增排列4.所有叶子结点在同一层,即深度相同 (叶节点可以看成是一种外部节点,不包含任何关键字信息) 在B-树中,每个结点中关键字从小到大排列,并且当该结点的孩子是非叶