Problem Description
Given two matrices A and B of size n×n, find the product of them.
bobo hates big integers. So you are only asked to find
the result modulo 3.
Input
The input consists of several tests. For each
tests:
The first line contains n (1≤n≤800). Each of the following n lines
contain n integers -- the description of the matrix A. The j-th integer in the
i-th line equals Aij. The next n lines describe the matrix B in
similar format (0≤Aij,Bij≤109).
Output
For each tests:
Print n lines. Each of them
contain n integers -- the matrix A×B in similar format.
Sample Input
1
0
1
2
0 1
2 3
4 5
6 7
Sample Output
0 0 1 2 1
1,忽视0 去做。
1 #include"stdio.h" 2 #include"string.h" 3 int a[801][801],b[801][801]; 4 int a1[801][801],b1[801][801]; 5 int c[801][801]; 6 int main() 7 { 8 int n,i,j,k; 9 while(scanf("%d",&n)==1) 10 { 11 memset(a,0,sizeof(a)); 12 memset(b,0,sizeof(b)); 13 memset(c,0,sizeof(c)); 14 memset(a1,0,sizeof(a1)); 15 memset(b1,0,sizeof(b1)); 16 for(i=1;i<=n;i++) 17 for(j=1;j<=n;j++) 18 { 19 scanf("%d",&a[i][j]); 20 a[i][j]%=3; 21 } 22 for(i=1;i<=n;i++) 23 for(j=1;j<=n;j++) 24 { 25 scanf("%d",&b[i][j]); 26 b[i][j]%=3; 27 } 28 for(i=1;i<=n;i++) 29 { 30 int pre=-1; 31 for(j=n;j>=0;j--) 32 { 33 a1[i][j]=pre; 34 if(a[i][j]) 35 pre=j; 36 } 37 } 38 for(i=1;i<=n;i++) 39 { 40 int pre=-1; 41 for(j=n;j>=0;j--) 42 { 43 b1[i][j]=pre; 44 if(b[i][j]) 45 pre=j; 46 } 47 } 48 for(i=1;i<=n;i++) 49 for(j=a1[i][0];j+1;j=a1[i][j]) 50 for(k=b1[j][0];k+1;k=b1[j][k]) 51 c[i][k]+=a[i][j]*b[j][k]; 52 for(i=1;i<=n;i++) 53 { 54 for(j=1;j<n;j++) 55 printf("%d ",c[i][j]%3); 56 printf("%d\n",c[i][j]%3); 57 } 58 } 59 return 0; 60 }
我们知道内存中二维数组是以行为单位连续存储的,逐列访问将会每次跳1000*4(bytes)。根据cpu cache的替换策略,将会有大量的cache失效。
时间居然会相差很多。 可见利用好cpu cache优化我们的程序,是非常有必要掌握的技能。
平时写程序时,也应当尽量使cpu对内存的访问,是尽可能连续的
/* Name: Matrix multiplication Copyright: Shangli Cloud Author: Shangli Cloud Date: 05/08/14 20:46 Description: 转置 */ /* #include"iostream" #include"cstdio" #include"cstring" using namespace std; const int ms=801; const int mod=3; */ #include"stdio.h" #include"string.h" //int a[ms][ms],b[ms][ms],c[ms][ms]; #define mod 3 int a[801][801],b[801][801],c[801][801]; int main() { int n,x,i,j,k; while(scanf("%d",&n)==1) { for(i=1;i<=n;i++) for(j=1;j<=n;j++) { scanf("%d",&x); a[i][j]=x%mod; } for(i=1;i<=n;i++) for(j=1;j<=n;j++) { scanf("%d",&x); b[j][i]=x%mod; } for(i=1;i<=n;i++) for(j=1;j<=n;j++) { c[i][j]=0; for(k=1;k<=n;k++) { //c[i][j]+=a[i][k]*b[j][k]%mod;多了个mod就超时, c[i][j]+=a[i][k]*b[j][k];//1656ms,多个Mod就超过2s. } if(j<n) printf("%d ",c[i][j]%mod); else printf("%d\n",c[i][j]%mod); } } return 0; }
Matrix multiplication hdu4920,布布扣,bubuko.com