图的最短路算法 Floyd

多源最短路径算法

时间复杂度O(N3)

简单修改可求有向图的传递闭包

#include<iostream>
using namespace std;
const int maxn=1024;
const int inf=1<<30;
int d[maxn][maxn];
int n,m;
void init()
{
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			d[i][j]=(i==j?0:inf);
}
int main()
{
	int from,to,dist;
	cin>>n>>m;
	init();
	for(int i=0;i<m;i++){
		cin>>from>>to>>dist;
		d[from][to]=d[to][from]=dist;//图是无向图
	}
	for(int k=1;k<=n;k++){//代表中间节点的K一定要在最外层循环
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
				if(d[i][k]<inf&&d[k][j]<inf){
					d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
				}
			}
		}
	}
	return 0;
}

  

时间: 2024-10-13 15:11:58

图的最短路算法 Floyd的相关文章

从存图到最短路算法的图论总结

INTRODUCTION: 图论算法在计算机科学中扮演着很重要的角色,它提供了对很多问题都有效的一种简单而系统的建模方式.很多问题都可以转化为图论问题,然后用图论的基本算法加以解决.--百度百科 对于OI而言,图是指由若干给定的点及若干条连接两点的线(边)所构成的图形 借助图论知识,我们往往可以将一些复杂的问题转化到基础的图论算法上,进而使用已有算法解决全新问题 那么想如果想要运用图论,首先要从存图开始 前排感谢教我图论的周润喵老师,syc学长,就序老师 可是我还是没学会 一,存图 对于一个图而

图的最短路算法 Dijkstra及其优化

单源最短路径算法 时间复杂度O(N2) 优化后时间复杂度为O(MlogN)(M为图中的边数 所以对于稀疏图来说优化后更快) 不支持有负权的图 #include<iostream> using namespace std; const int maxn=1024; const int inf=1<<30; int n,m; int d[maxn]; int v[maxn]; int G[maxn][maxn]; void init() { for(int i=1;i<=n;i+

多源最短路算法——floyd算法

1 #include<bits/stdc++.h> 2 #define ll long long 3 #define scan(i) scanf("%d",&i) 4 #define scand(i) scanf("%lf",&i) 5 #define scanl(i) scanf("%lld",&i) 6 #define f(i,a,b) for(int i=a;i<=b;i++) 7 #define

最短路算法floyd

内容: 对n个点(n<=450),已知他们的边,也就是相邻关系,求任意两个点的最短距离. 代码: for(int k=1; k<=n; k++)//k写在外面 for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) d[i][j]=min(d[i][j],d[i][k]+d[k][j]); 证明:参考 对于0~k,我们分i到j的最短路正好经过顶点k一次和完全不经过顶点k两种情况来讨论. 不经过顶点k的情况下,d[k][i][j] = d[k-

只有五行的Floyd最短路算法

暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有4个城市8条公路,公路上的数字表示这条公路的长短.请注意这些公路是单向的.我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径.这个问题这也被称为"多源最短路径"问题. 现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储.比如1号城市到2号城市的路程为2,则设e[

【啊哈!算法】算法6:只有五行的Floyd最短路算法

暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有4个城市8条公路,公路上的数字表示这条公路的长短.请注意这些公路是单向的.我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径.这个问题这也被称为“多源最短路径”问题. 现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储.比如1号城市到2号城市的路程为2,则设e[1][2]

最短路 之 floyd 算法

Floyd 在我认为这是最短路算法中最简单的一个,也是最low的一个. 所以我们组一位大佬给他起了一个新的名字,叫做超时!!! (其实如果数据范围很小的话,这个算法还是蛮好用的!!) 这个算法比较简单,要不我们直接上代码?! #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #define maxn 1000+15

仅仅有五行的Floyd最短路算法

暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,例如以下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道随意两个城市之前的最短路程. 上图中有4个城市8条公路,公路上的数字表示这条公路的长短.请注意这些公路是单向的. 我们如今须要求随意两个城市之间的最短路程,也就是求随意两个点之间的最短路径.这个问题这也被称为"多源最短路径"问题. 如今须要一个数据结构来存储图的信息,我们仍然能够用一个4*4的矩阵(二维数组e)来存储.比方1号城市到2号城市的路程为2,则

最短路算法模板合集(Dijkstar,Dijkstar(优先队列优化), 多源最短路Floyd)

再开始前我们先普及一下简单的图论知识 图的保存: 1.邻接矩阵. G[maxn][maxn]; 2.邻接表 邻接表我们有两种方式 (1)vector< Node > G[maxn]; 这个是之前就定义了图的大小了,再下面使用的时候就不用对图的大小进行申请了, 但是因为是直接申请了大小 要对图进行初始化,因此可能在某些题目中这样使用的话会超时 (2)vector< vector<Node> > G; 这个是未定义大小,但是在使用之前要对其的大小内存进行申请. G.resi