机器学习笔记 ML01c

贝叶斯分类器

*在垃圾邮件包含某个词的比例是多少(贝叶斯分类器)

*(贝叶斯分类器)记录游戏用户(玩多久。花多少的钱,与朋友互动有多少),从中 机器学习 ,看看他离开的概率有多少,

从而可以送一些道具给他,或邀请他参加活动,使他留下来

*百度的新闻分类,爬虫,计算每个词在某类新闻出现的概率比较高,本质上与垃圾邮件的分类没什么区别

*机器判定 正面,负面评论

*语音识别,语音输入(微信),自动识别语音变成文字;扫描印刷的字体,把里面的文字转化为text(OCR);机器把手写的输入变成汉字(也属于机器识别的衍生)

小波分析

比傅里叶展开更加适合高频的信号,可以获得更细的细节(像指纹识别,虹膜识别)

车牌识别,对进出的车辆进行登记,对一些学校、单位很有用

脸像识别,例如找犯罪分子,隧道监控系统(在隧道装摄像头,先在没有车的时候拍一张图片,有车的时候,监控录像可能会发现跟后台没车的图片对比不一样,但是车经过的时间很短,图像很快恢复成没车 的状况图,但是如果有个东西长期不动,跟背景不一样,那就很有可能发生意外的话)

机器人,智慧博弈(下图)先把局面标准化,把下棋的棋盘场景字符串化。而且是唯一的,比如说 “将” 用 J 表示

时间: 2024-10-12 20:37:57

机器学习笔记 ML01c的相关文章

机器学习笔记

下载链接:斯坦福机器学习笔记 这一系列笔记整理于2013年11月至2014年7月.所有内容均是个人理解,做笔记的原因是为了以后回顾相应方法时能快速记起,理解错误在所难免,不合适的地方敬请指正. 笔记按照斯坦福机器学习公开课的notes整理,其中online学习部分没有整理,reinforcement learning还没接触,有时间补上. 这份笔记主要记录自己学习过程中理解上的难点,所以对于初学者来说可能不容易理解,更详细和全面的说明可以参照JerryLead等的机器学习博文. 水哥@howde

机器学习笔记(1)

今天按照<机器学习实战>学习 k-邻近算法,输入KNN.classify0([0,0],group,labels,3)的时候总是报如下的错误: Traceback (most recent call last): File "<pyshell#75>", line 1, in <module> KNN.classify0([0,0],group,labels,3) File "KNN.py", line 16, in classi

机器学习笔记——K-means

K-means是一种聚类算法,其要求用户设定聚类个数k作为输入参数,因此,在运行此算法前,需要估计需要的簇的个数. 假设有n个点,需要聚到k个簇中.K-means算法首先从包含k个中心点的初始集合开始,即随机初始化簇的中心.随后,算法进行多次迭代处理并调整中心位置,知道达到最大迭代次数或中性收敛于固定点. k-means聚类实例.选择三个随机点用作聚类中心(左上),map阶段(右上)将每个点赋给离其最近的簇.在reduce阶段(左下),取相互关联的点的均值,作为新的簇的中心位置,得到本轮迭代的最

机器学习笔记 贝叶斯学习(上)

机器学习笔记(一) 今天正式开始机器学习的学习了,为了激励自己学习,也为了分享心得,决定把自己的学习的经验发到网上来让大家一起分享. 贝叶斯学习 先说一个在著名的MLPP上看到的例子,来自于Josh Tenenbaum 的博士论文,名字叫做数字游戏. 用我自己的话叙述就是:为了决定谁洗碗,小明和老婆决定玩一个游戏.小明老婆首先确定一种数的性质C,比如说质数或者尾数为3:然后给出一系列此类数在1至100中的实例D= {x1,...,xN} :最后给出任意一个数x请小明来预测x是否在D中.如果小明猜

机器学习笔记——人工神经网络

人工神经网络(Artificial Neural Networks,ANN)提供了一种普遍而实用的方法从样例中学习值为实数.离散值或向量的函数. 人工神经网络由一系列简单的单元相互密集连接构成,其中每一个单元有一定数量的实值输入(可能是其他单元的输出),并产生单一的实数值输出(可能成为其他单元的输入). 适合神经网络学习的问题: 实例是很多"属性-值"对表示的 目标函数的输出可能是离散值.实数值或者由若干实数或离散属性组成的向量 训练数据可能包含错误 可容忍长时间的训练 可能需要快速求

机器学习笔记04:逻辑回归(Logistic regression)、分类(Classification)

之前我们已经大概学习了用线性回归(Linear Regression)来解决一些预测问题,详见: 1.<机器学习笔记01:线性回归(Linear Regression)和梯度下降(Gradient Decent)> 2.<机器学习笔记02:多元线性回归.梯度下降和Normal equation> 3.<机器学习笔记03:Normal equation及其与梯度下降的比较> 说明:本文章所有图片均属于Stanford机器学课程,转载请注明出处 面对一些类似回归问题,我们可

机器学习笔记之基础概念

本文基本按照<统计学习方法>中第一章的顺序来写,目录如下: 1. 监督学习与非监督学习 2. 统计学习三要素 3. 过拟合与正则化(L1.L2) 4. 交叉验证 5. 泛化能力 6. 生成模型与判别模型 7. 机器学习主要问题 8. 提问 正文: 1. 监督学习与非监督学习 从标注数据中学习知识的规律以及训练模型的方法叫做监督学习,但由于标注数据获取成本较高,训练数据的数量往往不够,所以就有了从非标注数据,也就是非监督数据中学习的方法. 由于非监督数据更容易获取,所以非监督学习方法更适合于互联

cs229 斯坦福机器学习笔记(一)

前言 说到机器学习,很多人推荐的学习资料就是斯坦福Andrew Ng的cs229,有相关的视频和讲义.不过好的资料 != 好入门的资料,Andrew Ng在coursera有另外一个机器学习课程,更适合入门.课程有video,review questions和programing exercises,视频虽然没有中文字幕,不过看演示的讲义还是很好理解的(如果当初大学里的课有这么好,我也不至于毕业后成为文盲..).最重要的就是里面的programing exercises,得理解透才完成得来的,毕

机器学习笔记——SVM之一

SVM(Support Vector Machine),中文名为 支持向量机,就像自动机一样,听起来异常神气,最初总是纠结于不是机器怎么能叫"机",后来才知道其实此处的"机"实际上是算法的意思. 支持向量机一般用于分类,基本上,在我的理解范围内,所有的机器学习问题都是分类问题.而据说,SVM是效果最好而成本最低的分类算法. SVM是从线性可分的情况下最优分类面发展而来的,其基本思想可以用下图表示: (最优分类面示意图) 图中空心点和实心点代表两类数据样本,H为分类线