String painter
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1834 Accepted Submission(s): 814
Problem Description
There are two strings A and B with equal length. Both strings are made up of lower case letters. Now you have a powerful string painter. With the help of the painter, you can change a segment of characters of a string to any other
character you want. That is, after using the painter, the segment is made up of only one kind of character. Now your task is to change A to B using string painter. What’s the minimum number of operations?
Input
Input contains multiple cases. Each case consists of two lines:
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
Output
A single line contains one integer representing the answer.
Sample Input
zzzzzfzzzzz abcdefedcba abababababab cdcdcdcdcdcd
Sample Output
6 7
Source
Recommend
lcy | We have carefully selected several similar problems for you: 2480 2481 2478 2482 2475
Statistic | Submit | Discuss
| Note
区间dp,这题很特殊啊,要先考虑从空串变成第二个串,然后再利用这个信息去计算第一个串变成第二个串的最少次数
#include <map> #include <set> #include <list> #include <queue> #include <stack> #include <vector> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int N = 110; const int inf = 0x3f3f3f3f; int dp[N][N]; int f[N]; char stra[N], strb[N]; int main() { while(~scanf("%s%s", stra + 1, strb + 1)) { int n = strlen(stra + 1); memset (dp, 0, sizeof(dp)); memset (f, inf, sizeof(f)); for (int i = 1; i <= n; ++i) { dp[i][i] = 1; } for (int i = n; i >= 1; --i) { for (int j = i + 1; j <= n; ++j) { dp[i][j] = dp[i + 1][j] + 1; for (int k = i + 1; k <= j; ++k) { if (strb[k] == strb[i]) { dp[i][j] = min(dp[i][j], dp[i + 1][k] + dp[k + 1][j]); } } } } f[0] = 0; for (int i = 1; i <= n; ++i) { f[i] = dp[1][i]; } for (int i = 1; i <= n; ++i) { if (stra[i] == strb[i]) { f[i] = f[i - 1]; } else { for (int j = 0; j < i; ++j) { f[i] = min(f[i], f[j] + dp[j + 1][i]); } } } printf("%d\n", f[n]); } return 0; }