完成R Programming第三周
这周作业有点绕,更多地是通过一个缓存逆矩阵的案例,向我们示范【词法作用域 Lexical Scopping】的功效。但是作业里给出的函数有点绕口,花费了我们蛮多心思。
Lexical Scopping:
The value of free variables are searched for in the environment where the function was defined。
因此
make.power<-function(n){ pow<-function(x) { x^n } }
对于上诉函数,make.power(3)生成的不是一个数值,而是生成了一个新的函数。由此,
cube<-make.power(3) square<-make.power(2) cube(3) ---> 27 square(3) ---->9
make.power(3)生成了一个x^3的函数,而make.power(2)生成了一个x^2的函数。这里的n只会在函数定义的范围里去查找值,不会越过函数再继续查找。内置函数的Parent environment就是定义这个函数本身的函数。
据老师说,这样子的词法作用域,同时适用于python等较新潮的函数。或将成为未来编程界的主流。(compared with dynamic scoping),不过有个问题就是……基于复杂的环境啊等等,这些一般都是作用于物理内存里的,对内存依赖度很高。
在这里有提及,对于这些复杂的绕来绕去的作用域,一个比较简单的方法是:
Is(environment((cube)) >- n, pow (environment内部有两个对象) get("n",environment((cube)) 可以看到n定义为3
以上两个函数可以查看环境调用对象。适于检查。
另外附上本次作业,老师给出的示范例子,以及我个人加的备注项
makeVector<-function(x= numeric()){ m<-NULL#把m赋值为null set<-function(y){ x<<-y #set(y)后,x=y,m=null m<<-NULL } get <-function() x #把x赋值给get setmean<-function(mean) m<<-mean #这里求均值,只是依然存疑,为什么这里要用function(mean)。。或者在本函数里,不会做mean相关的操作,真正的solve实在cachemean里执行? getmean<-function() m #这里把m复制给getmean(NULL) list(set=set,get=get, setmean=setmean, getmean=getmean) } cachemean<-function(x, ...){ m<-x$getmean() #首先把getmean赋值给m,如果m不是NULL的话弹出下列提示 if(!is.null(m)){ message("getting cached data") return(m) }#出现缓存值 data<-x$get()#把最开始的numberic向量赋值给data m<-mean(data, ...) x$setmean(m)缓存m m }
以上
另外,本周还讲了几个有用的函数
lapply (对list)
sapply(lapply的简化版,如果list内均为单个数值,可以输出向量vector,如果等长度,可输出matrix,如果不同长度,输出list)
apply(适用于数组,即都是数的矩阵等,与for相比,字段更少,代码更加简洁,举例如apply(array,Margin,fun),里面margin,1为行row,2为列column
据说rowSums, rowMeans,colSums,colMeans效率更高,没具体试过
mapply(生成list很方便),如下面两行代码,效率一致,适用于把一个fun应用到不同参数里
mapply(rep,1:4,4:1) list(rep(1,4),rep(2,3),rep(3,2),rep(4,1))
tapply(用于对向量的子集做循环,用因子分组)
split(用因子向量对x分组)
library(datasets) data(iris) #探索性分析 names(iris) head(iris) #以下尝试取virginica,speal.Length的方法均错误 iris[,2] iris[iris$Species=="virginica",2] mean(iris[iris$Species=="virginica",2]) ##the above is error,not correct## tapply(test$Sepal.Length,test$Species,mean) #用species.mean对向量进行分组,此法可行,但上述方法为何错误需要再看
library(datasets) data(mtcars) #以下为做某个题时的若干测试。以及试错环节。lapply, tapply,split的用途,以及[[1]]怎么用 #count mpg via cyl d<-tapply(mtcars$mpg,mtcars$cyl,mean) #split out the mtcars, get a list split(mtcars,mtcars$cyl) #get every mtcars mean lapply(mtcars,mean) #error in match fun.(Fun), mtcars$cyl should be numberic or charter sapply(mtcars,mtcars$cyl,mean) ##test 4## #the below is uncorrect# #对于tapply出来的向量,可用[[1]]来取值 d[[1]]-d[[3]] library(datasets) head(mtcars) ?mtcars d<-tapply(mtcars$hp,mtcars$cyl,mean) d[[1]]-d[[3]]
以上结束
总体感想,虽然mooc对JHU的coursera课褒贬不一,但是认真听下来,比自行看书要容易入门。
以及编程这种事,必须多写,多交流,才能获得好处。
加油!