题意:有一个不递减的序列,现在要把这些数分成若干个部分,每部分不能少于m个数。每部分的权值为所有数减去该部分最小的数的和。求最小的总权值。
析:状态方程很容易写出来,dp[i] = min{dp[j] + sum[i] - sum[j] - (i-j)*a[j+1] },然而这个复杂度是 O(n^2)的肯定要TLE,
用斜率进行优化,维护一个下凸曲线,注意这个题是有个限制就是至少有要m个是连续的,所以开始的位置是2*m,想想为什么。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 500000 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL dp[maxn], sum[maxn]; int a[maxn], q[maxn]; LL getUP(int i, int j){ return dp[i] - sum[i] + (LL)i*a[i+1] - (dp[j] - sum[j] + (LL)j*a[j+1]); } LL getDOWN(int i, int j){ return a[i+1] - a[j+1]; } LL getDP(int i, int j){ return dp[j] + sum[i] - sum[j] - (LL)(i-j)*a[j+1]; } int main(){ int T; cin >> T; while(T--){ scanf("%d %d", &n, &m); for(int i = 1; i <= n; ++i){ scanf("%d", a+i); sum[i] = sum[i-1] + a[i]; } int fro = 0, rear = 0; q[++rear] = m; for(int i = m; i < 2*m; ++i) dp[i] = sum[i] - i * a[1]; for(int i = m * 2; i <= n; ++i){ // notice while(fro+1 < rear && getUP(q[fro+2], q[fro+1]) <= i*getDOWN(q[fro+2], q[fro+1])) ++fro; dp[i] = getDP(i, q[fro+1]); int k = i - m + 1; while(fro+1 < rear && getUP(k, q[rear])*getDOWN(k, q[rear-1]) <= getUP(k, q[rear-1])*getDOWN(k, q[rear])) --rear; q[++rear] = k; } printf("%I64d\n", dp[n]); } return 0; }
时间: 2024-10-26 10:33:48