POJ 3709 K-Anonymous Sequence (斜率优化DP)

题意:有一个不递减的序列,现在要把这些数分成若干个部分,每部分不能少于m个数。每部分的权值为所有数减去该部分最小的数的和。求最小的总权值。

析:状态方程很容易写出来,dp[i] = min{dp[j] + sum[i] - sum[j] - (i-j)*a[j+1] },然而这个复杂度是 O(n^2)的肯定要TLE,

用斜率进行优化,维护一个下凸曲线,注意这个题是有个限制就是至少有要m个是连续的,所以开始的位置是2*m,想想为什么。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e16;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 500000 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
  return r >= 0 && r < n && c >= 0 && c < m;
}

LL dp[maxn], sum[maxn];
int a[maxn], q[maxn];

LL getUP(int i, int j){
  return dp[i] - sum[i] + (LL)i*a[i+1] - (dp[j] - sum[j] + (LL)j*a[j+1]);
}

LL getDOWN(int i, int j){
  return a[i+1] - a[j+1];
}

LL getDP(int i, int j){
  return dp[j] + sum[i] - sum[j] - (LL)(i-j)*a[j+1];
}

int main(){
  int T;  cin >> T;
  while(T--){
    scanf("%d %d", &n, &m);
    for(int i = 1; i <= n; ++i){
      scanf("%d", a+i);
      sum[i] = sum[i-1] + a[i];
    }
    int fro = 0, rear = 0;
    q[++rear] = m;
    for(int i = m; i < 2*m; ++i)  dp[i] = sum[i] - i * a[1];
    for(int i = m * 2; i <= n; ++i){  // notice
      while(fro+1 < rear && getUP(q[fro+2], q[fro+1]) <= i*getDOWN(q[fro+2], q[fro+1]))  ++fro;
      dp[i] = getDP(i, q[fro+1]);
      int k = i - m + 1;
      while(fro+1 < rear && getUP(k, q[rear])*getDOWN(k, q[rear-1]) <= getUP(k, q[rear-1])*getDOWN(k, q[rear]))  --rear;
      q[++rear] = k;
    }
    printf("%I64d\n", dp[n]);
  }
  return 0;
}

  

时间: 2024-10-26 10:33:48

POJ 3709 K-Anonymous Sequence (斜率优化DP)的相关文章

hdu 2993 MAX Average Problem (斜率优化dp入门)

MAX Average Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5855    Accepted Submission(s): 1456 Problem Description Consider a simple sequence which only contains positive integers as

【转】斜率优化DP和四边形不等式优化DP整理

当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重循环跑状态 i,一重循环跑 i 的所有子状态)这样的时间复杂度是O(N^2)而 斜率优化或者四边形不等式优化后的DP 可以将时间复杂度缩减到O(N) O(N^2)可以优化到O(N) ,O(N^3)可以优化到O(N^2),依次类推 斜率优化DP和四边形不等式优化DP主要的原理就是利用斜率或者四边形不等式等数学方法 在所有要判断的子状态中迅速做出判断,所以这里的优化其实是省去了枚举

hdu3507之斜率优化DP入门

Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) Total Submission(s): 4780    Accepted Submission(s): 1437 Problem Description Zero has an old printer that doesn't work well sometimes. As it is antiqu

HDU3045 Picnic Cows(斜率优化DP)

Picnic Cows Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2192    Accepted Submission(s): 675 Problem Description It’s summer vocation now. After tedious milking, cows are tired and wish to t

BZOJ 1096 [ZJOI2007]仓库建设 斜率优化dp

1096: [ZJOI2007]仓库建设 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1096 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场

HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程很容易想出来,dp[i][j] 表示前 j 个数分成 i 组.但是复杂度是三次方的,肯定会超时,就要对其进行优化. 有两种方式,一种是斜率对其进行优化,是一个很简单的斜率优化 dp[i][j] = min{dp[i-1][k] - w[k] + sum[k]*sum[k] - sum[k]*sum[

BZOJ 3156: 防御准备 斜率优化DP

3156: 防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 10 2 3 1 5 4 5 6 3 1 2 Sample Output 18 HINT 1<=N<=10^6,1<=Ai<=10^9 题解: 斜率优化DP: 首先将数组倒置 设定dp[i] 为前i的点的最优答案 易得 dp[i] = min{dp[j

BZOJ 1096 ZJOI2007 仓库设计 斜率优化dp

太高兴了,这是我第一次自己独立思考的斜率优化dp,从头到尾都是自己想的.(相信自己,能行的,不过也做了40分钟了). 这道题目还好吧! 看到之后第一反应是想设从工厂0运到工厂i 总共需要 tot[i] 的费用, 用 p[i] 表示从山顶到工厂 i 总共的产品数, 再用 x[i] 表示从工厂0到工厂 i 的距离, 那么状态转移方程就是 f[i] = min{f[j] + tot[i] - tot[j] - p[j] * (x[i] - x[j] ) + c[i] } ,很明显由于数据有 n <=

HDU2829 Lawrence(斜率优化dp)

学了模板题之后上网搜下斜率优化dp的题目,然后就看到这道题,知道是斜率dp之后有思路就可以自己做不出来,要是不事先知道的话那就说不定了. 题意:给你n个数,一开始n个数相邻的数之间是被东西连着的,对于连着的一片的数,它们的价值就是两两乘积的和.所以4 5 1 2一开始就是4*5+4*1+4*2+5*1+5*2+1*2... 注意到两两乘积的和其实是可以这么算的((a1+a2+a3+..an)^2-(a1^2+a2^2+....))/2.现在我可以在数与数之间切m刀,问切完之后的最小价值是多少.