【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息

题目描述

小强要在N个孤立的星球上建立起一套通信系统。这套通信系统就是连接N个点的一个树。

这个树的边是一条一条添加上去的。在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量。

例如,在上图中,现在一共有了5条边。其中,(3,8)这条边的负载是6,因为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8)。

现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的询问。

输入

第一行包含两个整数N,Q,表示星球的数量和操作的数量。星球从1开始编号。

接下来的Q行,每行是如下两种格式之一:

A x y 表示在x和y之间连一条边。保证之前x和y是不联通的。

Q x y 表示询问(x,y)这条边上的负载。保证x和y之间有一条边。

1≤N,Q≤100000

输出

对每个查询操作,输出被查询的边的负载。

样例输入

8 6
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8

样例输出

6



题解

LCT维护子树信息

学了大神的LCT维护子树信息的方式,觉得还算好理解,于是自己yy了这道题。

我们知道,在LCT中的Splay Tree中,access某个点并splay到根,那么它的实儿子记录的信息是这条链的信息,并不是我们想要的子树信息。

而所有实儿子和虚儿子的信息才是我们想要求的子树信息。

但是由于虚儿子“儿子认爹,爹不认儿子”的性质,无法在pushup的时候上传信息。

事实上,我们注意到,对于Splay Tree的所有基本操作,除了access和link以外,都不会对虚儿子的信息进行修改。

那么我们每次在添加虚儿子时,顺便把虚儿子的信息也记录到父亲节点中。

这样我们每次调用一个节点时,将它Splay Tree中实儿子的信息,加上它自身的虚儿子的信息,就是我们想要的子树信息。

于是我们对于每个节点记录两个信息:它的总信息和它虚儿子的信息,pushup时更新x的总信息为:x实儿子的总信息+x虚儿子的信息+x本身的信息。

按照这种方法我们来思考这道题,可以发现所求的答案就是一条边两端点的子树大小乘积,我们把某一个端点定为整棵树的根,可以知道整棵树的大小,而根据另一个节点可以知道一个子树的大小,相减即为另一个子树的大小。

具体的实现:

access操作中割断了实边c[1][x],该边变为了虚边,所以应该加到x的虚儿子信息中,加入了实边t,该边不再是虚边,所以应从x的虚儿子信息中减去。

link操作中为了在加入x时同时更新y的信息,需要makeroot(x),makeroot(y),然后连x->y的虚边(实际上只需要access(y)和splay(y))。

其余的操作,和普通的LCT没有任何区别。

代码中需要注意的是,sum[x]存的是总信息(子树大小),si[x]存的是虚儿子信息(子树除了链以外的大小),不要弄混。

#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
int fa[N] , c[2][N] , si[N] , sum[N] , rev[N];
char str[5];
void pushup(int x)
{
	sum[x] = sum[c[0][x]] + sum[c[1][x]] + si[x] + 1;
}
void pushdown(int x)
{
	if(rev[x])
	{
		int l = c[0][x] , r = c[1][x];
		swap(c[0][l] , c[1][l]) , swap(c[0][r] , c[1][r]);
		rev[l] ^= 1 , rev[r] ^= 1 , rev[x] = 0;
	}
}
bool isroot(int x)
{
	return c[0][fa[x]] != x && c[1][fa[x]] != x;
}
void update(int x)
{
	if(!isroot(x)) update(fa[x]);
	pushdown(x);
}
void rotate(int x)
{
	int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
	if(!isroot(y)) c[c[1][z] == y][z] = x;
	fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
	pushup(y) , pushup(x);
}
void splay(int x)
{
	update(x);
	while(!isroot(x))
	{
		int y = fa[x] , z = fa[y];
		if(!isroot(y))
		{
			if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
			else rotate(y);
		}
		rotate(x);
	}
}
void access(int x)
{
	int t = 0;
	while(x) splay(x) , si[x] += sum[c[0][x]] - sum[t] , c[0][x] = t , pushup(x) , t = x , x = fa[x];
}
void makeroot(int x)
{
	access(x) , splay(x) , swap(c[0][x] , c[1][x]) , rev[x] = 1;
}
void split(int x , int y)
{
	makeroot(x) , makeroot(y);
}
void link(int x , int y)
{
	split(x , y) , fa[x] = y , si[y] += sum[x] , pushup(y);
}
int main()
{
	int n , m , i , x , y;
	scanf("%d%d" , &n , &m);
	for(i = 1 ; i <= n ; i ++ ) sum[i] = 1;
	while(m -- )
	{
		scanf("%s%d%d" , str , &x , &y);
		if(str[0] == ‘A‘) link(x , y);
		else split(x , y) , printf("%lld\n" , (long long)sum[x] * (sum[y] - sum[x]));
	}
	return 0;
}
时间: 2024-10-10 08:04:16

【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息的相关文章

[BJOI2014]大融合 LCT维护子树信息

Code: #include <cstdio> #include <algorithm> #include <cstring> #include <string> using namespace std; void setIO(string a){freopen((a+".in").c_str(),"r",stdin);} #define maxn 100009 #define ll long long int n,q

Loj 2230. 「BJOI2014」大融合 (LCT 维护子树信息)

链接:https://loj.ac/problem/2230 思路: 设立siz数组保存虚点信息,sum表示总信息 维护子树信息link操作和access操作需要进行一些改动 可参考博客:https://www.cnblogs.com/GXZlegend/p/7061458.html 实现代码; #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include&l

【BZOJ3510】首都 LCT维护子树信息+启发式合并

[BZOJ3510]首都 Description 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打败了B国,那么B国将永远从这个星球消失,而B国的国土也将归A国管辖.A国国王为了加强统治,会在A国和B国之间修建一条公路,即选择原A国的某个城市和B国某个城市,修建一条连接这两座城市的公路. 同样为了便于统治自己的国家,国家的首都会选在某个使得其他城市到它距离之和最小的城市,这里的距离是指需要经过公

bzoj3510 首都 LCT 维护子树信息+树的重心

题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3510 题解 首先每一个连通块的首都根据定义,显然就是直径. 然后考虑直径的几个性质: 定义:删去这个点以后剩下的连通块最大的最小的点为重心. 一棵树最多只能有两个相邻的直径: 一棵树的重心到一棵树中所有点的距离和最小.(这个也是题目的条件转化为重心的原因) 两棵树的并的重心在两棵树各自的重心的连线上. 一棵树添加或者删除一个节点,树的重心最多只移动一条边的位置. 有了这些性质,我们可以发现,

【LCT维护子树信息】uoj207 共价大爷游长沙

这道题思路方面就不多讲了,主要是通过这题学一下lct维护子树信息. lct某节点u的子树信息由其重链的一棵splay上信息和若干轻儿子子树信息合并而成. splay是有子树结构的,可以在rotate,access的时候由儿子update到父亲,而轻儿子的信息update不上来,需要另外记一下. 记sum[x]为我们要求的子树信息,xu[x]为x的轻儿子的子树信息. (即,xu[x]由轻儿子的sum更新,sum[x]由xu[x]和splay子树上的儿子的sum更新. 这样我们就可以完整地用lct维

LuoguP4219 [BJOI2014]大融合(LCT)

早上考试想用\(LCT\)维护联通块\(size\),现在才发现\(LCT\)的\(size\)有虚实之分 \(Link\)与\(Acess\)中虚实变,干他丫的 \(Splay\)中只是相对关系,没有虚实变,因此不搞它 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #define R(a,b,c) fo

BZOJ4530[BJOI2014]大融合

Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. Input 第一行包含

Luogu4219 BJOI2014 大融合 LCT

传送门 题意:写一个数据结构,支持图上连边(保证图是森林)和询问一条边两端的连通块大小的乘积.$\text{点数.询问数} \leq 10^5$ 图上连边,$LCT$跑不掉 支持子树$size$有点麻烦.我们需要虚子树的$size$和(实子树的可以直接$pushup$),那么我们对于每一个点就去维护其虚子树的$size$和,那么每一个点的子树和就是可以维护的了.可以知道只有$link$和$access$操作会修改虚子树和(其他都在实链上进行操作),稍微加一点东西就行了.相对来说还是比较裸. 注意

[XSY 1556] 股神小D LCT维护子树信息

实现 1 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cctype> 6 #include <algorithm> 7 #include <vector> 8 using namespace std; 9 #define F(i, a, b) for (register int i = (a); i <= (b); i++)