题目:
有一个很大的文件,这文件中的内容全部都是数字,要求尝试从这个文件中找出最大的10个数字。
分析:
看起来像是一个比较简单的问题。不用大数据框架的话,也能比较轻易的实现:就是逐个读取文件中的每个数字,放到一个大顶堆结构中;将大顶堆放满以后,每读取一个数字就将之和大顶堆中的最小值进行比较,如果其大于这个最小值的话,就将其放入堆中,并将堆中的最小值删除;这样读取到最后,堆中剩下来的内容就是top 10了。
用MapReduce实现的话也说不上困难:我们只使用Map任务读取文件,而reduce中输出的内容就是一个有序的结果集,那么后十位自然就是Top10了。这方案虽说可行,但绝说不上是好的方案。
换个思路:map任务中先完成一轮过滤(没必要多添一重Combiner),先取出每个Map中的top10来,而后在reduce中再进行一轮筛选,从所有map的top10中再选出个top10来。这样处理效率应该会高一些。
看看实现过程:
package com.zhyea.dev; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.IOException; import java.util.TreeSet; public class TopN { private static final Logger logger = LoggerFactory.getLogger(TopN.class); public static class SplitterMapper extends Mapper<Object, Text, IntWritable, NullWritable> { private static final IntWritable intWritable = new IntWritable(); private static final TreeSet<Integer> set = new TreeSet<>(); @Override public void map(Object key, Text value, Context context) { int num = Integer.valueOf(value.toString()); if (set.size() < 10) { set.add(num); return; } if (num > set.first()) { set.add(num); set.pollFirst(); } } @Override public void cleanup(Context context) { for (Integer i : set) { intWritable.set(i); try { context.write(intWritable, NullWritable.get()); } catch (Exception e) { e.printStackTrace(); } } } } public static class IntegrateReducer extends Reducer<IntWritable, NullWritable, IntWritable, NullWritable> { private static final IntWritable intWritable = new IntWritable(); private static final TreeSet<Integer> set = new TreeSet<>(); @Override public void reduce(IntWritable key, Iterable<NullWritable> values, Context context) { try { int num = key.get(); if (set.size() < 10) { set.add(num); return; } if (num > set.first()) { set.add(num); set.pollFirst(); } } catch (Exception e) { e.printStackTrace(); } } @Override public void cleanup(Context context) { for (Integer i : set) { intWritable.set(i); try { context.write(intWritable, NullWritable.get()); } catch (Exception e) { e.printStackTrace(); } } } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "top-n"); job.setJarByClass(TopN.class); job.setMapperClass(SplitterMapper.class); job.setReducerClass(IntegrateReducer.class); job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(NullWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
程序里在map或reduce方法中没有做任何输出,只是实现了比较逻辑,真正的输出是在cleanup方法中完成的。
用spark实现的话可以先做全排序,然后排重,take前N个记录就可以了。当然也可以按照上面的思路来做实现,下面的代码就是按照我们前面的思路来做的实现:
package com.zhyea.dev import java.util import org.apache.hadoop.io.{LongWritable, Text} import org.apache.hadoop.mapred.TextInputFormat import org.apache.spark.{SparkConf, SparkContext} import collection.JavaConversions.asScalaIterator object TopTen { def main(args: Array[String]): Unit = { val inputPath = args(0) val outputPath = args(1) val conf = new SparkConf().setAppName("Top Ten") val sc = new SparkContext(conf) val data = sc.hadoopFile[LongWritable, Text, TextInputFormat](inputPath) data.mapPartitions[Long](findTopTen) .repartition(1) .distinct() .sortBy(_.toLong, false) .mapPartitions(itr => itr.slice(0, 10)) .saveAsTextFile(outputPath) def findTopTen(itr: Iterator[(LongWritable, Text)]) = { val set = new util.TreeSet[Long]() itr.foreach(p => { val v = p._2.toString.toLong if (set.size <= 10) { set.add(v) } else if (v > set.first) { set.pollFirst() set.add(v) } }) set.iterator } } }
############################
时间: 2024-10-11 10:54:58