在anchor_target层,这两行是计算bounding regression代码:
bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32) bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])
def _compute_targets(ex_rois, gt_rois): """Compute bounding-box regression targets for an image.""" assert ex_rois.shape[0] == gt_rois.shape[0] assert ex_rois.shape[1] == 4 assert gt_rois.shape[1] == 5 return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)
以下是bounding regression的计算公式:
def bbox_transform(ex_rois, gt_rois): ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0 ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0 ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0 gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0 gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = np.log(gt_widths / ex_widths) targets_dh = np.log(gt_heights / ex_heights) targets = np.vstack( (targets_dx, targets_dy, targets_dw, targets_dh)).transpose() return targets
bbox_targets存储的是anchor和gt之间的bouding regression,并且将作为这一层的一个输出,输出到rpn_loss_bbox。
rpn_loss_bbox的另一个输入是
实际上,
rpn_loss_bbox就是rpn损失函数的第二部分,也就是计算框损失的部分。论文中的两个输入是ti和ti*,我本以为ti和ti*是两个框的4个坐标(即左上右下)。但实际看代码发现,ti是
rpn_bbox_pred,
是一个feature map(即特征向量)。ti*是anchor和gt bounding box regression的结果(即△x,△y,△w,△h)。这样也可以看出rpn_bbox_pred不是直接生成的roi坐标,而是feature map。
时间: 2024-11-05 23:22:57