编写高质量代码改善C#程序的157个建议——建议83:小心Parallel中的陷阱

建议83:小心Parallel中的陷阱

Parallel的For和ForEach方法还支持一些相对复杂的应用。在这些应用中,它允许我们在每个任务启动时执行一些初始化操作,在每个任务结束后,又执行一些后续工作,同时,还允许我们监视任务的状态。但是,记住上面这句话“允许我们监视任务的状态”是错误的:应该把其中的“任务”改成“线程”。这,就是陷阱所在。

我们需要深刻理解这些具体的操作和应用,不然,极有可能陷入这个陷阱中去。下面体会这段代码的输出是什么,如下所示:

static void Main(string[] args)
{
    int[] nums = new int[] { 1, 2, 3, 4 };
    int total = 0;
    Parallel.For<int>(0, nums.Length, () =>
        {
            return 1;
        }, (i, loopState, subtotal) =>
        {
            subtotal += nums[i];
            return subtotal;
        },
        (x) => Interlocked.Add(ref total, x)
        );
    Console.WriteLine("total={0}", total);
    Console.ReadKey();
} 

这段代码有可能输出11,较少的情况下输出12,虽然理论上有可能输出13和14,但是我们应该很少有机会观察到。要明白为什么会有这样的输出,首先必须详细了解For方法的各个参数。上面这个For方法的声明如下:

public static ParallelLoopResult For<TLocal>(int fromInclusive, int toExclusive, Func<TLocal> localInit, Func<int, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally);

前面两个参数相对容易理解,分别是起始索引和结束索引。

参数body也比较容易理解,即任务体本身。其中subtotal为单个任务的返回值。

localInit和localFinally就比较难理解了,并且陷阱也在这里。要理解这两个参数,必须先理解Parallel.For方法的运作模式。For方法采用并发的方式来启动循环体中的每个任务,这意味着,任务是交给线程池去管理的。在上面的代码中,循环次数共计4次,实际运行时调度启动的后台线程也就只有一个或两个。这就是并发的优势,也是线程池的优势,Parallel通过内部的调度算法,最大化地节约了线程的消耗。localInit的作用是如果Parallel为我们新起了一个线程,它就会执行一些初始化的任务在上面的例子中:

() =>
    {
        return 1;
    } 

它会将任务体中的subtotal这个值初始化为1。

localFinally的作用是,在每个线程结束的时候,它执行一些收尾工作:

(x) => Interlocked.Add(ref total, x) 

这行代码所代表的收尾工作实际就是:

totaltotal = total + subtotal; 

其中的x,其实代表的就是任务体中的返回值,具体在这个例子中就是subtotal在返回时的值。使用Interlocked是对total使用原子操作,以避免并发所带来的问题。

现在,我们应该很好理解为什么上面这段代码的输出会不确定了。Parallel一共启动了4个任务,但是我们不能确定Parallel到底为我们启动了多少个线程,那是运行时根据自己的调度算法决定的。如果所有的并发任务只用了一个线程,则输出为11;如果用了两个线程,那么根据程序的逻辑来看,输出就是12了。

在这段代码中,如果让localInit返回的值为0,也许你就永远不会注意到这个陷阱:

() =>
    {
        return 0;
    } 

现在,为了更清晰地体会这个陷阱,我们使用下面这段更好理解的代码:

static void Main(string[] args)
{
    string[] stringArr = new string[] { "aa", "bb", "cc", "dd", "ee", "ff",
        "gg", "hh" };
    string result = string.Empty;
    Parallel.For<string>(0, stringArr.Length, () => "-", (i, loopState,
        subResult) =>
        {
            return subResult += stringArr[i];
        }, (threadEndString) =>
            {
                result += threadEndString;
                Console.WriteLine("Inner:" + threadEndString);
            });
    Console.WriteLine(result);
    Console.ReadKey();
} 

这段代码的一个可能的输出为:
Inner:-aaccddeeffgghh
Inner:-bb
-aaccddeeffgghh-bb

转自:《编写高质量代码改善C#程序的157个建议》陆敏技

时间: 2024-08-29 19:08:46

编写高质量代码改善C#程序的157个建议——建议83:小心Parallel中的陷阱的相关文章

编写高质量代码改善C#程序的157个建议——建议45:为泛型类型参数指定逆变

建议45:为泛型类型参数指定逆变 逆变是指方法的参数可以是委托或者泛型接口的参数类型的基类.FCL4.0中支持逆变的常用委托有: Func<int T,out TResult> Predicate<in T> 常用委托有: IComparer<in T> 下面例子演示了泛型类型参数指定逆变所带来的好处: class Program { static void Main() { Programmer p = new Programmer { Name = "Mi

编写高质量代码改善C#程序的157个建议——建议27:在查询中使用Lambda表达式

建议27:在查询中使用Lambda表达式 LINQ实际上是基于扩展方法和Lambda表达式的.任何LINQ查询都能通过扩展方法的方式来代替. var personWithCompanyList = from person in personList select new { PersonName = person.Name, CompanyName = person.CompanyID==0?"Micro":"Sun" }; foreach (var item in

编写高质量代码改善C#程序的157个建议——建议26:使用匿名类型存储LINQ查询结果

建议26:使用匿名类型存储LINQ查询结果 从.NET3.0开始,C#开始支持一个新特性:匿名类型.匿名类型有var.赋值运算符和一个非空初始值(或以new开头的初始化项)组成.匿名类型有如下基本特性: 即支持简单类型也指出复杂类型.简单类型必须是一个非空初始值,复杂类型则是一个以new开头的初始化项. 匿名类型的属性是只读的,没有属性设置器,它一旦被初始化就不可更改. 如果两个匿名类型的属性值相同,那么就认为这两个匿名类型相等. 匿名类型可以再循环中用作初始化器. 匿名类型支持智能感知. 匿名

编写高质量代码改善C#程序的157个建议——建议20:使用泛型集合代替非泛型集合

建议20:使用泛型集合代替非泛型集合 在建议1中我们知道,如果要让代码高效运行,应该尽量避免装箱和拆箱,以及尽量减少转型.很遗憾,在微软提供给我们的第一代集合类型中没有做到这一点,下面我们看ArrayList这个类的使用情况: ArrayList al=new ArrayList(); al.Add(0); al.Add(1); al.Add("mike"); foreach (var item in al) { Console.WriteLine(item); } 上面这段代码充分演

编写高质量代码改善C#程序的157个建议——建议12: 重写Equals时也要重写GetHashCode

建议12: 重写Equals时也要重写GetHashCode 除非考虑到自定义类型会被用作基于散列的集合的键值:否则,不建议重写Equals方法,因为这会带来一系列的问题. 如果编译上一个建议中的Person这个类型,编译器会提示这样一个信息: “重写 Object.Equals(object o)但不重写 Object.GetHashCode()” 如果重写Equals方法的时候不重写GetHashCode方法,在使用如FCL中的Dictionary类时,可能隐含一些潜在的Bug.还是针对上一

编写高质量代码改善C#程序的157个建议——建议13: 为类型输出格式化字符串

建议13: 为类型输出格式化字符串 有两种方法可以为类型提供格式化的字符串输出.一种是意识到类型会产生格式化字符串输出,于是让类型继承接口IFormattable.这对类型来 说,是一种主动实现的方式,要求开发者可以预见类型在格式化方面的要求.更多的时候,类型的使用者需为类型自定义格式化器,这就是第二种方法,也是最灵活 多变的方法,可以根据需求的变化为类型提供多个格式化器.下面就来详细介绍这两种方法. 最简单的字符串输出是为类型重写ToString方法,如果没有为类型重写该方法,默认会调用Obj

编写高质量代码改善C#程序的157个建议——建议90:不要为抽象类提供公开的构造方法

建议90:不要为抽象类提供公开的构造方法 首先,抽象类可以有构造方法.即使没有为抽象类指定构造方法,编译器也会为我们生成一个默认的protected的构造方法.下面是一个标准的最简单的抽象类: abstract class MyAbstractClass { protected MyAbstractClass(){} } 其次,抽象类的方法不应该是public或internal的.抽象类设计的本意是让子类继承,而不是用于生成实例对象的.如果抽象类是public或internal的,它对于其它类型

编写高质量代码改善C#程序的157个建议——建议85:Task中的异常处理

建议85:Task中的异常处理 在任何时候,异常处理都是非常重要的一个环节.多线程与并行编程中尤其是这样.如果不处理这些后台任务中的异常,应用程序将会莫名其妙的退出.处理那些不是主线程(如果是窗体程序,那就是UI主线程)产生的异常,最终的办法都是将其包装到主线程上. 在任务并行库中,如果对任务运行Wait.WaitAny.WaitAll等方法,或者求Result属性,都能捕获到AggregateException异常.可以将AggregateException异常看做是任务并行库编程中最上层的异

编写高质量代码改善C#程序的157个建议——建议89:在并行方法体中谨慎使用锁

建议89:在并行方法体中谨慎使用锁 除了建议88所提到的场合,要谨慎使用并行的情况还包括:某些本身就需要同步运行的场合,或者需要较长时间锁定共享资源的场合. 在对整型数据进行同步操作时,可以使用静态类Interlocked的Add方法,这就极大地避免了由于进行原子操作长时间锁定某个共享资源所带来的同步性能损耗.回顾建议83中的例子. static void Main(string[] args) { int[] nums = new int[] { 1, 2, 3, 4 }; int total

编写高质量代码改善C#程序的157个建议——建议87:区分WPF和WinForm的线程模型

建议87:区分WPF和WinForm的线程模型 WPF和WinForm窗体应用程序都有一个要求,那就是UI元素(如Button.TextBox等)必须由创建它的那个线程进行更新.WinForm在这方面的限制并不是很严格,所以像下面这样的代码,在WinForm中大部分情况下还能运行(本建议后面会详细解释为什么会出现这种现象): private void buttonStartAsync_Click(object sender, EventArgs e) { Task t = new Task(()