还是要参加NOIP —— 洛谷 P2341 [HAOI2006]受欢迎的牛

题目描述

每头奶牛都梦想成为牛棚里的明星。被所有奶牛喜欢的奶牛就是一头明星奶牛。所有奶

牛都是自恋狂,每头奶牛总是喜欢自己的。奶牛之间的“喜欢”是可以传递的——如果A喜

欢B,B喜欢C,那么A也喜欢C。牛栏里共有N 头奶牛,给定一些奶牛之间的爱慕关系,请你

算出有多少头奶牛可以当明星。

输入输出格式

输入格式:

? 第一行:两个用空格分开的整数:N和M

? 第二行到第M + 1行:每行两个用空格分开的整数:A和B,表示A喜欢B

输出格式:

? 第一行:单独一个整数,表示明星奶牛的数量

输入输出样例

输入样例#1:

3 3
1 2
2 1
2 3

输出样例#1:

1

说明

只有 3 号奶牛可以做明星

【数据范围】

10%的数据N<=20, M<=50

30%的数据N<=1000,M<=20000

70%的数据N<=5000,M<=50000

100%的数据N<=10000,M<=50000

练习1

Tarjan缩点

屠龙宝刀点击就送

#include <ctype.h>
#include <cstdio>
#define M 50050
#define N 10050
void read(int &x)
{
    x=0;bool f=0;
    char ch=getchar();
    while(!isdigit(ch))
    {
        if(ch==‘-‘) f=1;
        ch=getchar();
    }
    while(isdigit(ch))
    {
        x=x*10+ch-‘0‘;
        ch=getchar();
    }
    x=f?(~x)+1:x;
}
struct node
{
    int pre,next,to;
}edge[M];
int min(int a,int b) {return a>b?b:a;}
int QLT[N],ans,num,out[N],n,m,head[M],cnt,dfn[N],sumcol,col[N],low[N],T,Stack[N<<1],top;
bool vis[N],instack[N];
void add(int i,int j)
{
    cnt++;
    edge[cnt].pre=i;
    edge[cnt].next=head[i];
    edge[cnt].to=j;
    head[i]=cnt;
}
void tarjan(int x)
{
    low[x]=dfn[x]=++T;
    Stack[++top]=x;
    vis[x]=1;
    instack[x]=1;
    for(int i=head[x];i;i=edge[i].next)
    {
        int v=edge[i].to;
        if(instack[v]) low[x]=min(low[x],dfn[v]);
        else if(!vis[v])
        {
            tarjan(v);
            low[x]=min(low[x],low[v]);
        }
    }
    if(dfn[x]==low[x])
    {
        sumcol++;
        while(x!=Stack[top])
        {
            QLT[sumcol]++;
            instack[Stack[top]]=0;
            col[Stack[top--]]=sumcol;
        }
        instack[Stack[top]]=0;
        col[Stack[top--]]=sumcol;
        QLT[sumcol]++;
    }
}
int main()
{
    read(n);read(m);
    for(int x,y,i=1;i<=m;i++)
    {
        read(x);
        read(y);
        add(x,y);
    }
    for(int i=1;i<=n;i++) if(!vis[i]) tarjan(i);
    for(int i=1;i<=m;i++)
    {
        int u=edge[i].pre,v=edge[i].to;
        if(col[v]!=col[u])
            out[col[u]]++;
    }
    for(int i=1;i<=sumcol;i++) if(!out[i]) num++,ans=QLT[i];
    num!=1?printf("0"):printf("%d\n",ans);
    return 0;
}
时间: 2024-10-13 15:50:09

还是要参加NOIP —— 洛谷 P2341 [HAOI2006]受欢迎的牛的相关文章

POJ——T2186 Popular Cows || 洛谷——P2341 [HAOI2006]受欢迎的牛

http://poj.org/problem?id=2186 || https://www.luogu.org/problem/show?pid=2341 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 33470   Accepted: 13634 Description Every cow's dream is to become the most popular cow in the herd. In a herd

P2341 [HAOI2006]受欢迎的牛(tarjan+缩点)

P2341 [HAOI2006]受欢迎的牛 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C.牛栏里共有N 头奶牛,给定一些奶牛之间的爱慕关系,请你 算出有多少头奶牛可以当明星. 输入输出格式 输入格式: ? 第一行:两个用空格分开的整数:N和M ? 第二行到第M + 1行:每行两个用空格分开的整数:A和B,表示A喜欢B 输出格式: ? 第一行:

P2341 [HAOI2006]受欢迎的牛(更完)

P2341 [HAOI2006]受欢迎的牛 题解 tarjan 缩点板子题 如果 A 稀饭 B,那就 A 向 B 连边,构造出一个有向图 如果这个有向图里有强连通分量,也就说明这个强连通分量里的所有奶牛互相稀饭,他们都有机会成为明星奶牛 但是如果这个有向图里有2个及以上的出度为0的强连通分量,那么就不会有任何一个明星奶牛 所以就是tarjan缩点+寻找出度为0的强连通分量 代码 #include<iostream> #include<cstdio> #include<algo

【luogu P2341 [HAOI2006]受欢迎的牛】 题解

题解报告:https://www.luogu.org/problemnew/show/P2341 我们把图中的强连通分量缩点,然后只有出度为0的牛是受欢迎的,这样如果出度为0的牛只有一个,说明受所有牛欢迎.否则出度为0只是受一些牛欢迎. #include <stack> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using names

Luogu P2341 [HAOI2006]受欢迎的牛

这道题应该也是经典的SCC题了吧 印象中不知道在在班里上课的时候在紫书,ACM竞赛的那些书上看到多少次(有点奇怪) 首先思路很明显,就是要找出有多少个点,以它们为起点可以遍历整个图 首先考虑一种情况,这种情况是多数SCC题目的突破口,即:环对题目的影响 我们发现,对于这道题,我们如果把环缩点,那么还是一样的 因为一个环中所有点都可以互相到达,因此缩点后每一个点内部相当于都可以直接到达,我们只需要统计一下每一个SCC中有多少个点然后就等价了 这里有一个结论,还是挺有用的: 在有向图中,如果有且仅有

P2341 [HAOI2006]受欢迎的牛

题目背景 本题测试数据已修复. 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C.牛栏里共有N 头奶牛,给定一些奶牛之间的爱慕关系,请你 算出有多少头奶牛可以当明星. 输入输出格式 输入格式: ? 第一行:两个用空格分开的整数:N和M ? 第二行到第M + 1行:每行两个用空格分开的整数:A和B,表示A喜欢B 输出格式: ? 第一行:单独一个整数

P2341 [HAOI2006]受欢迎的牛[SCC缩点]

题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的"喜欢"是可以传递的--如果A喜 欢B,B喜欢C,那么A也喜欢C.牛栏里共有N 头奶牛,给定一些奶牛之间的爱慕关系,请你 算出有多少头奶牛可以当明星. 解析 又是一道水题emmm. 容易发现,缩点之后的图中,能当明星的最多只有一个点,超过一个就不合法. 如下图中的红色点中所有奶牛都可以当明星. 而下面这种情况,因为紫色节点的存在,显然不合法. 如果缩点

P2341 [HAOI2006]受欢迎的牛|【模板】强连通分量(tarjan)

强连通板子,先缩点,然后考虑只有出度为0的点才可能成为答案,但是如果出度为0的点有多个答案则为0 我用并查集维护了是否在一条链上的关系 代码: #include <bits/stdc++.h> #define int long long #define sc(a) scanf("%lld",&a) #define scc(a,b) scanf("%lld %lld",&a,&b) #define sccc(a,b,c) scanf

1051: [HAOI2006]受欢迎的牛

1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2410  Solved: 1276[Submit][Status] Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头牛被所有的牛认为是受欢迎的. Input 第一行两个数