根据二叉树的先序和中序遍历重建二叉树

#include <iostream>
#include <cstdio>
using namespace std;
typedef struct BiTNode {
    int data;
    struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;

BiTree PreInCreate(char A[], char B[], int l1, int h1, int l2, int h2) {
    BiTNode *root = (BiTNode *)malloc(sizeof(BiTNode));
    root->data = A[l1];
    int i;
    for(i = l2; B[i] != root->data; i++);
    int llen = i - l2;
    int rlen = h2 - i;
    if(llen){
        root->lchild = PreInCreate(A, B, l1+1, l1+llen, l2, l2+llen-1);
    } else {
        root->lchild = NULL;
    }
    if(rlen) {
        root->rchild = PreInCreate(A, B, h1-rlen+1, h1, h2-rlen+1, h2);
    } else {
        root->rchild = NULL;
    }
    return root;
}
void PreOrder(BiTree T) {
    if(T != NULL) {
        printf("%c  ", T->data);
        PreOrder(T->lchild);
        PreOrder(T->rchild);
    }
}
void InOrder(BiTree T) {
    if(T != NULL) {
        InOrder(T->lchild);
        printf("%c  ", T->data);
        InOrder(T->rchild);
    }
}

int main()
{
    char A[100], B[100];
    printf("please input preorder and inorder :\n");
    scanf("%s%s", A+1, B+1);
    A[0] = A[0] = 'a';
    int len = strlen(A)-1;
    BiTNode * root = PreInCreate(A, B, 1, len, 1, len);
    PreOrder(root);
    cout << endl;
    InOrder(root);

    return 0;
}
/**
Test:
124356
421536
**/

时间: 2024-10-09 12:22:24

根据二叉树的先序和中序遍历重建二叉树的相关文章

根据先序和中序序列构建二叉树

说明: 本次实验利用中序和先序序列,采用递归方式来构建二叉树 . 经过几天的失败和思考,我认为递归构建二叉树的过程中最重要的是递归单元,最麻烦的是递归参数的选择和传递. 简单将算法过程用如下流程图来表示:(本帖所用算法及图片均为原创内容,转贴注明出处) 算法:1.根据先序序列,建立根结点T 2.寻找中序序列的根结点位置,并据此位置计算左子树和右子树的区间 3.判断l_start和r_end是否相等,相等则表示只有一个根结点,设置其左右孩子结点为空并结束这一层:若不相等则继续下面步骤: 4.根据2

二叉树高度,以及栈实现二叉树的先序,中序,后序遍历的非递归操作

求解二叉树的高度 树是递归定义的,所以用递归算法去求一棵二叉树的高度很方便. #include <iostream> #include <cstdio> using namespace std; struct Node { char data; Node *lchild; Node *rchild; }; void High(Node *T, int &h) { if (T == NULL) h = 0; else { int left_h; High(T->lchi

二叉树基本操作:前序、中序、后序遍历(递归方式)

二叉树是最常见最重要的数据结构之一,它的定义如下: 二叉树(binary tree)是有限多个节点的集合,这个结合或者是空集,或者由一个根节点和两颗互不相交的.分别称为左子树和右子树的二叉树组成. 二叉树最基本的操作是遍历:一般约定遍历时左节点优先于右节点,这样根据根节点的遍历顺序可分为三种遍历操作:前序-先遍历根节点,再处理左右节点:中序-先遍历左节点,然后处理根节点,最后处理右节点:后序-先遍历左右节点,然后处理根节点. 从上边二叉树定义可以看出:二叉树使用了递归的概念描述.所以,二叉树的很

给出二叉树的先序和中序遍历,给出后序遍历

实现一个功能: 输入:一颗二叉树的先序和中序遍历 输出:后续遍历 思想: 先序遍历中,第一个元素是树根 在中序遍历中找到树根,左边的是左子树 右边的是右子树 1 def fromFMtoL( mid ): 2 global las #全局后序遍历 3 global fir #先序遍历 4 5 root = fir[0] #取出当前树根 6 7 fir = fir[1:] #取出树根后 先序遍历把根拿出来 下面一个元素做树根 8 root_po = mid.find( root ) #在中序遍历当

前序遍历和中序遍历重建二叉树

对于二叉树,在此我不做过多讲解,如有不懂,请参照一下链接点击打开链接 1.在此二叉树的定义: struct BinaryTreeNode     {         BinaryTreeNode<T> *_Left;         BinaryTreeNode<T> *_Right;         T _data;     public:         BinaryTreeNode(const T& x)             :_Left(NULL)       

给定二叉树先序、中序遍历序列,求后序遍历

给定一个二叉树的前序遍历和中序遍历的序列,输出对应这个二叉树的后续遍历序列. 输入描述: 输入为一行. 两个字符串,分别表示二叉树的前序遍历和中序遍历结果,用空格分隔.保证数据合法 输出描述: 对应输出后序遍历序列 示例1 输入 ABDEC DBEAC 输出 DEBCA思路:先根据先序.中序序列建立二叉树,然后后序遍历 import java.util.Scanner; import javax.print.attribute.standard.PresentationDirection; cl

[LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that duplicates do not exist in the tree. 这道题要求用先序和中序遍历来建立二叉树,跟之前那道Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树原理基本相同,针对这道题,由于先

C语言非递归实现二叉树的先序、中序、后序、层序遍历

C语言非递归实现二叉树的先序.中序.后序.层序遍历代码如下: 1 #include <stdio.h> 2 #include <stdlib.h> 3 #include <stack> 4 #include <queue> 5 using namespace std; 6 7 //*****二叉树的二叉链表存储表示*****// 8 typedef struct BiNode 9 { 10 char data; 11 struct BiNode *lchil

二叉树(14)----由前序遍历和中序遍历重建二叉树

1.二叉树定义 typedef struct BTreeNodeElement_t_ { void *data; } BTreeNodeElement_t; typedef struct BTreeNode_t_ { BTreeNodeElement_t *m_pElemt; struct BTreeNode_t_ *m_pLeft; struct BTreeNode_t_ *m_pRight; } BTreeNode_t; 二.根据前序遍历序列和中序遍历序列重建二叉树 算法说明: 由中序遍历序

如何由二叉树的先序和中序序列画出二叉树

今天数据结构的考试有这个题,做了好久,下来后,我好好地在网上查了一下,并结合我自己的理解,总结出来了一个比较好理解的方法.这个方法可以说做起这样的题又快又准. (概括为一个口诀:先序放中间,中序分两边)  基本思想就是递归:1.取出先序的第一个节点.(先序中的节点为根节点)2.用第一个节点可以将中序分成左右子树,然后又取出先序的第二个节点   再次将左右子树再次划分,3,当将中序全部划分为单个点时就结束.例如:假设一颗二叉树的先序序列是:EBADCFHGIKJ. 中序序列为:ABCDEFGHIJ