NYOJ 取石子(八) 威佐夫博弈

取石子(八)

时间限制:1000 ms  |  内存限制:65535 KB

难度:3

描述

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。如果你胜,你第1次怎样取子?

输入
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000。a=b=0退出。
输出
输出也有若干行,如果最后你是败者,则为0,反之,输出1,并输出使你胜的你第1次取石子后剩下的两堆石子的数量x,y,x<=y。如果在任意的一堆中取走石子能胜同时在两堆中同时取走相同数量的石子也能胜,先输出取走相同数量的石子的情况,假如取一堆的有多种情况,先输出从石子多的一堆中取的情况,且要求输出结果保证第二个值不小于第一个值。
样例输入
1 2 5 72 20 0
样例输出
013 53 54 710 01 2

这种博弈比前面一种要稍微复杂一点。我们来看下下面这个游戏。

有两堆火柴棍,每次可以从某一堆取至少1根火柴棍(无上限),或者从两堆取相同的火柴棍数。最后取完的是胜利者。好了,如果你不知道这个博弈定理,对于小数目的火柴棍数,可能还能推出来,但是如果火柴棍数一多,就不行了。看了下面的这个介绍,你也会有一种被骗的感觉。

首先我们知道两堆火柴是没有差别的,也就是说第一堆有a根,第二堆有b根和第一堆有b根,第二堆有a根是一样的结果。

我们用一个二维的状态(a,b)来记录当前剩下的火柴数,表示第一堆剩下a根火柴,第二堆剩下b根火柴。同样我们假设两个人的编号是A和B,且A先取。

那么如果某个人遇到了这样的状态(0,0)那么也就是说这个人输了。这样的状态我们叫做奇异状态,也可以叫做失败态。

那么接下来的几个失败态为(1,2),(3,5),(4,7),(6,10),(8,13)……

我们用a[i]表示失败态中的第一个,b[i]表示失败态中的第二个.(i从0开始).

那么我们可以看到b[i] = a[i]+i;(i >= 0),a[i]是前面的失败态中没有出现过的最小的整数

下面我们可以得到三个基本的结论。

1.每个数仅包含在一个失败态中

首先我们知道a[k]是不可能和前面的失败态中的a[i],b[i]重复的(这点由a[i]的得到可以知道)

b[k] = a[k]+k > a[k-1]+k>a[k-1]+k-1+1>a[k-1]+(k-1) = b[k-1]>a[k-1]这样我们知道每个数仅在一个失败态中。

2.每个失败态可以转到非失败态。

加入当前的失败态为(a,b),那么如果我们只在一堆中取的话,肯定会变成非失败态(这点由第一点可以保证),如果从两堆同时取的话,由于每个失败态的差是不一样的,所以也不可能得到一个失败态。也就是说一个失败态不管你怎么取,都会得到一个非失败态。

3.每个非失败态都可以转到一个失败态

对于这个结论,首先我们要知到每个状态(a,b)要么a = a[i],要么b = b[i].(每个数都出现在一个失败态中),下面我们分两种情况来讨论

I.a = a[i].如果b = a的话那么一次取完就变成了(0,0).如果b > b[i]的话,那么我们从第二堆中取走b-b[i]就变成了一个失败态。如果b < b[i].那么我们从两堆中同时取走a-a[b-a[i]]这样得到失败态(a[b-a[i]],a[b-a[i]]+b-a[i])(a[i] = a)

II.b = b[i].如果a > a[i]那么我们从第一堆中取走a-a[i]根火柴.

如果a < a[i].这里又分两种情况。第一是a = a[k](k < i)

那么我们从第二堆取走b - b[k]就行了。

第二是a = b[k]这样的话由于两堆火柴是没有区别的,所以我们把b变成a[k]就行了,也即是从第二堆火柴中取走b - a[k]就变成了失败态

至于怎么判断一个状态是否是失败态.我们可以用下面的方法来判断(本人暂时还不会证明)

a[i] = [i*(1+√5)/2](这里的中括号表示向下取整)   b[i] = a[i]+i;

那么这就是一个失败态

具体的请查看:

http://blog.csdn.net/niushuai666/article/details/6638943

这个题就是将一个状态转化为必败状态.

#include<iostream>
#include <cstdio>
#include <algorithm>
#include<math.h>
using namespace std;
int main()
{
    int a,b,temp,temp2,k,i;
    while(scanf("%d%d",&a,&b),a+b)
    {
        if(a>b)
            swap(a,b);
        k=b-a;
        temp=k*(1.0+sqrt(5.0))/2.0;
        if(a==temp)    //奇异局势
            printf("0\n");
        else
        {
            printf("1\n");
            if(abs(temp-a)==abs(temp+k-b)&&temp<a)    //两堆
                printf("%d %d\n",temp,temp+k);
            if(a==0)    //0 0情况,第一种奇异局势
                printf("0 0\n");
            for(i=1;i<=b;i++)  //一堆
            {
                temp=i*(1.0+sqrt(5.0))/2.0;
                temp2=temp+i;
                if(temp>b)
                    break;
                if(temp==a&&temp2<b)
                    printf("%d %d\n",a,temp2);
                else if(temp2==a&&temp<b)
                    printf("%d %d\n",temp,a);
                else if(temp2==b&&temp<a)
                    printf("%d %d\n",temp,b);
            }
        }
    }
    return 0;
}        

NYOJ 取石子(八) 威佐夫博弈

时间: 2024-11-10 01:27:04

NYOJ 取石子(八) 威佐夫博弈的相关文章

HDU 1527 取石子游戏 威佐夫博弈

题目来源:HDU 1527 取石子游戏 题意:中文 思路:威佐夫博弈 必败态为 (a,b ) ai + i = bi     ai = i*(1+sqrt(5.0)+1)/2   这题就求出i然后带人i和i+1判断是否成立 以下转自网上某总结 有公式ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,-,n 方括号表示取整函数) 其中出现了黄金分割数(1+√5)/2 = 1.618-,因此,由ak,bk组成的矩形近似为黄金矩形 由于2/(1+√5)=(√5-1)/2,可以先

洛谷P2252 取石子游戏(威佐夫博弈)

题目背景 无 题目描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,你先取,假设双方都采取最好的策略,问最后你是胜者还是败者. 输入输出格式 输入格式: 输入共一行. 第一行共两个数a, b,表示石子的初始情况. 输出格式: 输出共一行. 第一行为一个数字1.0或-1,如果最后你是胜利者则为1:若失败则为0:若结

【POJ1067】取石子游戏 威佐夫博弈 这种题真的有意义么?

题意:default是汉语,自己看去. 题解: 威佐夫博弈这种恶心东西,"正常"解法是打表找规律. 但是我自认为找不出来这种规律,考试要是出了这种题-- 就随便输出一个来期望50分吧.. 要是每个测点都多组数据--那--就随机输出0/1期望10分吧. 要是多组数据的组数太多,那就按照表来乱搞. 小数据打表输出,大数据233. 威佐夫用的是黄金分割数.(网上查的) 下面是代码: #include <cmath> #include <cstdio> #include

取石子游戏 威佐夫博弈

取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25176   Accepted: 7961 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.

POJ1067 取石子游戏 威佐夫博弈 博弈论

http://poj.org/problem?id=1067 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者. Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000

hdu1527取石子游戏 威佐夫博弈

//ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...n 方括号表示取整函数) //即(bk-ak)==ak*(√5-1)/2 或 (bk-ak)+ 1==ak*(√5-1)/2即输 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std ; int main() { int n , m; while(~sc

HDU 2177 取(2堆)石子游戏 威佐夫博弈

题目来源:HDU 2177 取(2堆)石子游戏 题意:中文 思路:判断是否是必败态就不说了 做过hdu1527就知道了 现在如果不是必败态 输出下一步所有的必败态 题目要求先输出两堆都取的方案 首先 a = b 直接2堆取完 a != b 因为bi = ai+i 现在知道ak 和 bk 那么 k = bk-ak 得到k 求出 aj 和 bj 如果ak-aj == bk-bj && ak-aj > 0(aj, bj)是必败态 输出aj bj 然后是只取一堆的情况 假设a不变 求出对应的

hdu1527 &amp; poj1067 取石子游戏 威佐夫博奕模型,,模板题o(╯□╰)o

取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 35727   Accepted: 12065 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者

nyoj 取石子(八)(威佐夫博弈,多种情况)

取石子(八) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.如果你胜,你第1次怎样取子? 输入 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,