airflow常见问题的排查记录如下:
airflow的scheduler进程在执行一个任务后就挂起进入假死状态
出现这个情况的一般原因是scheduler调度器生成了任务,但是无法发布出去。而日志中又没有什么错误信息。
可能原因是Borker连接依赖库没安装:
如果是redis作为broker则执行pip install apache‐airflow[redis]
如果是rabbitmq作为broker则执行pip install apache-airflow[rabbitmq]
还有要排查scheduler节点是否能正常访问rabbitmq。
当定义的dag
文件过多的时候,airflow的scheduler节点运行效率缓慢
airflow的scheduler默认是起两个线程,可以通过修改配置文件airflow.cfg
改进:
[scheduler]
# The scheduler can run multiple threads in parallel to schedule dags.
# This defines how many threads will run.
#默认是2这里改为100
max_threads = 100
AirFlow: jinja2.exceptions.TemplateNotFound
? 这是由于airflow使用了jinja2作为模板引擎导致的一个陷阱,当使用bash命令的时候,尾部必须加一个空格:
- Described here : see below. You need to add a space after the script name in cases where you are directly calling a bash scripts in the
bash_command
attribute ofBashOperator
- this is because the Airflow tries to apply a Jinja template to it, which will fail.
t2 = BashOperator(
task_id=‘sleep‘,
bash_command="/home/batcher/test.sh", // This fails with `Jinja template not found` error
#bash_command="/home/batcher/test.sh ", // This works (has a space after)
dag=dag)
参考链接:
https://cwiki.apache.org/confluence/display/AIRFLOW/Common+Pitfalls
AirFlow: Task is not able to be run
任务执行一段时间后突然无法执行,后台worker日志显示如下提示:
[2018-05-25 17:22:05,068] {jobs.py:2508} INFO - Task is not able to be run
查看任务对应的执行日志:
cat /home/py/airflow-home/logs/testBashOperator/print_date/2018-05-25T00:00:00/6.log
...
[2018-05-25 17:22:05,067] {models.py:1190} INFO - Dependencies not met for <TaskInstance: testBashOperator.print_date 2018-05-25 00:00:00 [success]>,
dependency ‘Task Instance State‘ FAILED: Task is in the ‘success‘ state which is not a valid state for execution. The task must be cleared in order to be run.
根据错误提示,说明依赖任务状态失败,针对这种情况有两种解决办法:
- 使用airflow run运行task的时候指定忽略依赖task:
$ airflow run -A dag_id task_id execution_date
- 使用命令airflow clear dag_id进行任务清理:
$ airflow clear -u testBashOperator
CELERY: PRECONDITION_FAILED - inequivalent arg ‘x-expires‘ for queue ‘[email protected]‘ in vhost ‘‘
在升级celery 4.x以后使用rabbitmq为broker运行任务抛出如下异常:
[2018-06-29 09:32:14,622: CRITICAL/MainProcess] Unrecoverable error: PreconditionFailed(406, "PRECONDITION_FAILED - inequivalent arg ‘x-expires‘ for queue ‘[email protected]
SZ-L01395.celery.pidbox‘ in vhost ‘/‘: received the value ‘10000‘ of type ‘signedint‘ but current is none", (50, 10), ‘Queue.declare‘)
Traceback (most recent call last):
File "c:\programdata\anaconda3\lib\site-packages\celery\worker\worker.py", line 205, in start
self.blueprint.start(self)
.......
File "c:\programdata\anaconda3\lib\site-packages\amqp\channel.py", line 277, in _on_close
reply_code, reply_text, (class_id, method_id), ChannelError,
amqp.exceptions.PreconditionFailed: Queue.declare: (406) PRECONDITION_FAILED - inequivalent arg ‘x-expires‘ for queue ‘[email protected]‘ in vhost ‘/‘
: received the value ‘10000‘ of type ‘signedint‘ but current is none
出现该错误的原因一般是因为rabbitmq的客户端和服务端参数不一致导致的,将其参数保持一致即可。
? 比如这里提示是x-expires 对应的celery中的配置是control_queue_expires。因此只需要在配置文件中加上control_queue_expires = None即可。
? 在celery 3.x中是没有这两项配置的,在4.x中必须保证这两项配置的一致性,不然就会抛出如上的异常。
我这里遇到的了两个rabbitmq的配置与celery配置的映射关系如下表:
rabbitmq | celery4.x |
---|---|
x-expires | control_queue_expires |
x-message-ttl | control_queue_ttl |
CELERY: The AMQP result backend is scheduled for deprecation in version 4.0 and removal in version v5.0.Please use RPC backend or a persistent backend
celery升级到4.x之后运行抛出如下异常:
/anaconda/anaconda3/lib/python3.6/site-packages/celery/backends/amqp.py:67: CPendingDeprecationWarning:
The AMQP result backend is scheduled for deprecation in version 4.0 and removal in version v5.0. Please use RPC backend or a persistent backend.
alternative=‘Please use RPC backend or a persistent backend.‘)
原因解析:
在celery 4.0中 rabbitmq 配置result_backbend方式变了:
以前是跟broker一样:
result_backend = ‘amqp://guest:[email protected]:5672//‘
现在对应的是rpc配置:
result_backend = ‘rpc://‘
参考链接:
http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-event_queue_prefix
CELERY: ValueError(‘not enough values to unpack (expected 3, got 0)‘,)
windows上运行celery 4.x抛出以下错误:
[2018-07-02 10:54:17,516: ERROR/MainProcess] Task handler raised error: ValueError(‘not enough values to unpack (expected 3, got 0)‘,)
Traceback (most recent call last):
......
tasks, accept, hostname = _loc
ValueError: not enough values to unpack (expected 3, got 0)
celery 4.x暂时不支持windows平台,如果为了调试目的的话,可以通过替换celery的线程池实现以达到在windows平台上运行的目的:
pip install eventlet
celery -A <module> worker -l info -P eventlet
参考链接:
https://stackoverflow.com/questions/45744992/celery-raises-valueerror-not-enough-values-to-unpack
https://blog.csdn.net/qq_30242609/article/details/79047660
Airflow: ERROR - ‘DisabledBackend‘ object has no attribute ‘_get_task_meta_for‘
airflow运行中抛出以下异常:
Traceback (most recent call last):
File "/anaconda/anaconda3/lib/python3.6/site-packages/airflow/executors/celery_executor.py", line 83, in sync
......
return self._maybe_set_cache(self.backend.get_task_meta(self.id))
File "/anaconda/anaconda3/lib/python3.6/site-packages/celery/backends/base.py", line 307, in get_task_meta
meta = self._get_task_meta_for(task_id)
AttributeError: ‘DisabledBackend‘ object has no attribute ‘_get_task_meta_for‘
[2018-07-04 10:52:14,746] {celery_executor.py:101} ERROR - Error syncing the celery executor, ignoring it:
[2018-07-04 10:52:14,746] {celery_executor.py:102} ERROR - ‘DisabledBackend‘ object has no attribute ‘_get_task_meta_for‘
这种错误有两种可能原因:
- CELERY_RESULT_BACKEND属性没有配置或者配置错误;
- celery版本太低,比如airflow 1.9.0要使用celery4.x,所以检查celery版本,保持版本兼容;
airflow.exceptions.AirflowException dag_id could not be found xxxx. Either the dag did not exist or it failed to parse
查看worker日志airflow-worker.err
airflow.exceptions.AirflowException: dag_id could not be found: bmhttp. Either the dag did not exist or it failed to parse.
[2018-07-31 17:37:34,191: ERROR/ForkPoolWorker-6] Task airflow.executors.celery_executor.execute_command[181c78d0-242c-4265-aabe-11d04887f44a] raised unexpected: AirflowException(‘Celery command failed‘,)
Traceback (most recent call last):
File "/anaconda/anaconda3/lib/python3.6/site-packages/airflow/executors/celery_executor.py", line 52, in execute_command
subprocess.check_call(command, shell=True)
File "/anaconda/anaconda3/lib/python3.6/subprocess.py", line 291, in check_call
raise CalledProcessError(retcode, cmd)
subprocess.CalledProcessError: Command ‘airflow run bmhttp get_op1 2018-07-26T06:28:00 --local -sd /home/ignite/airflow/dags/BenchMark01.py‘ returned non-zero exit status 1.
? 通过异常日志中的Command
信息得知, 调度节点在生成任务消息的时候同时也指定了要执行的脚本的路径(通过ds参数指定),也就是说调度节点(scheduler)和工作节点(worker)相应的dag脚本文件必须置于相同的路径下面,不然就会出现以上错误。
https://stackoverflow.com/questions/43235130/airflow-dag-id-could-not-be-found
AirFlow常见问题汇总
原文地址:https://www.cnblogs.com/cord/p/9397584.html