论文阅读------基于MBD的特征识别方法的研究

图同构判定

边的凸凹性判定

原文地址:https://www.cnblogs.com/jieyi/p/9288577.html

时间: 2024-11-08 14:23:52

论文阅读------基于MBD的特征识别方法的研究的相关文章

论文阅读方法

论文阅读方法 别先读摘要,从导言部分入手 找出大问题 这个领域正在设法解决什么问题? 以不超过5句话的篇幅总结背景 为解决这一"大问题",这一领域做过什么努力?之前的工作有什么局限?在作者看来,下一步需要做什么?简洁地解释为什么要进行这项研究. 找出具体问题 作者在他们的研究中究竟想回答什么问题?把这些问题(不一定是一个)写下来.如果是那种研究一个或者多个零假设的研究,把零假设辨别出来. 弄清解决手段 为了回答这些具体的问题,作者要怎么做? 阅读方法部分 为每一个实验画出一个图表,画出

了解移动用户的隐私期望:一种基于推荐的Crowdsourcing方法

应学习之需,最近一段时间阅读了一篇论文,特写下总结,若有纰漏,还望指出. 目录 引言 推荐机制 1.1 为什么要了解移动用户的隐私期望 1.移动设备的广泛使用存在一些潜在的隐私威胁和信息泄漏. 2.系统供应商针对这个问题已经提出了相应措施,例如:苹果的iOS系统可以让用户控制应用是否可以访问特定的敏感数据源.Android平台同样也有类似的细粒度权限控制机制.然而,存在自身缺点:不包括所有的用户都具备知识背景能够正确地进行隐私配置.同时是一项乏味且具有挑战性的工作.用户体验不高. 3.没有一个简

论文阅读记录: Automatic Image Colorization sig16

sig论文阅读记录 Let there be Color!: Joint End-to-end Learning of Global and Local Image Priorsfor Automatic Image Colorization with Simultaneous Classification ( siggraph 2016 ) 论文简介 论文主页:http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en/ 作者是来自Wa

论文阅读 | FCOS: Fully Convolutional One-Stage Object Detection

论文阅读——FCOS: Fully Convolutional One-Stage Object Detection 概述 目前anchor-free大热,从DenseBoxes到CornerNet.ExtremeNet,以及最近的FSAF.FoveaBox,避免了复杂的超参数设计,而且具有很好的检测效果.本文作者提出了一种全卷积的单阶段目标检测算法,类似于语义分割的做法使用像素级预测.该检测框架简单有效,而且可以方便地用于其他任务. 简介 再啰嗦一下基于anchor的检测算法的缺陷: 1.检测

论文阅读:Adaptive NMS: Refining Pedestrian Detection in a Crowd

论文阅读:Adaptive NMS: Refining Pedestrian Detection in a Crowd 2019年04月11日 23:08:02 Kivee123 阅读数 836 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_37014750/article/details/89222334 Adaptive-NMS(CVPR 2019) 文章  又是一篇在NMS上

论文阅读:《Bag of Tricks for Efficient Text Classification》

论文阅读:<Bag of Tricks for Efficient Text Classification> 2018-04-25 11:22:29 卓寿杰_SoulJoy 阅读数 954更多 分类专栏: 深度学习 自然语言处理 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u011239443/article/details/80076720 https://blog.csdn.ne

论文阅读与模型复现——HAN

论文阅读论文链接:https://arxiv.org/pdf/1903.07293.pdf tensorflow版代码Github链接:https://github.com/Jhy1993/HAN 介绍视频:https://www.bilibili.com/video/av53418944/ 参考博客:https://blog.csdn.net/yyl424525/article/details/103804574 文中提出了一种新的基于注意力机制的异质图神经网络 Heterogeneous G

Google File System 论文阅读笔记

核心目标:Google File System是一个面向密集应用的,可伸缩的大规模分布式文件系统.GFS运行在廉价的设备上,提供给了灾难冗余的能力,为大量客户机提供了高性能的服务. 1.一系列前提 GFS的系统构建针对其自身使用的特点在传统的分布式系统的基础上又进行了一些创新,基于的前提假设主要包括以下方面: 1.由于系统由廉价的商用机构成,组件失效被认为是一种常态,系统必须可以持续监控自身的状态. 2.系统存储以大文件为主,小文件也支持,但是没有进行特别的优化处理. 3.系统的工作负载主要包含

深度学习论文阅读笔记--Deep Learning Face Representation from Predicting 10,000 Classes

来自:CVPR 2014   作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang 题目:Deep Learning Face Representation from Predicting 10,000 Classes 主要内容:通过深度学习来进行图像高级特征表示(DeepID),进而进行人脸的分类. 优点:在人脸验证上面做,可以很好的扩展到其他的应用,并且夸数据库有效性:在数据库中的类别越多时,其泛化能力越强,特征比较少,不像其他特征好几K甚至上M,好的泛化能力+不过拟合于