python 深入理解 赋值、引用、拷贝、作用域

在 python 中赋值语句总是建立对象的引用值,而不是复制对象。因此,python 变量更像是指针,而不是数据存储区域,

这点和大多数 OO 语言类似吧,比如 C++、java 等 ~

1、先来看个问题吧:

在Python中,令values=[0,1,2];values[1]=values,为何结果是[0,[...],2]?

>>> values = [0, 1, 2]
>>> values[1] = values
>>> values
[0, [...], 2]

我预想应当是

[0, [0, 1, 2], 2]

但结果却为何要赋值无限次?

可以说 Python 没有赋值,只有引用。你这样相当于创建了一个引用自身的结构,所以导致了无限循环。为了理解这个问题,有个基本概念需要搞清楚。

Python 没有「变量」,我们平时所说的变量其实只是「标签」,是引用。

执行

values = [0, 1, 2]

的时候,Python 做的事情是首先创建一个列表对象 [0, 1, 2],然后给它贴上名为 values 的标签。如果随后又执行

values = [3, 4, 5]

的话,Python 做的事情是创建另一个列表对象 [3, 4, 5],然后把刚才那张名为 values 的标签从前面的 [0, 1, 2] 对象上撕下来,重新贴到 [3, 4, 5] 这个对象上。

至始至终,并没有一个叫做 values 的列表对象容器存在,Python 也没有把任何对象的值复制进 values 去。过程如图所示:

执行

values[1] = values

的时候,Python 做的事情则是把 values 这个标签所引用的列表对象的第二个元素指向 values 所引用的列表对象本身。执行完毕后,values 标签还是指向原来那个对象,只不过那个对象的结构发生了变化,从之前的列表 [0, 1, 2] 变成了 [0, ?, 2],而这个 ? 则是指向那个对象本身的一个引用。如图所示:

要达到你所需要的效果,即得到 [0, [0, 1, 2], 2] 这个对象,你不能直接将 values[1] 指向 values 引用的对象本身,而是需要吧 [0, 1, 2] 这个对象「复制」一遍,得到一个新对象,再将 values[1] 指向这个复制后的对象。Python 里面复制对象的操作因对象类型而异,复制列表 values 的操作是

values[:] #生成对象的拷贝或者是复制序列,不再是引用和共享变量,但此法只能顶层复制

所以你需要执行

values[1] = values[:]

Python 做的事情是,先 dereference 得到 values 所指向的对象 [0, 1, 2],然后执行 [0, 1, 2][:] 复制操作得到一个新的对象,内容也是 [0, 1, 2],然后将 values 所指向的列表对象的第二个元素指向这个复制二来的列表对象,最终 values 指向的对象是 [0, [0, 1, 2], 2]。过程如图所示:

往更深处说,values[:] 复制操作是所谓的「浅复制」(shallow copy),当列表对象有嵌套的时候也会产生出乎意料的错误,比如

a = [0, [1, 2], 3]
b = a[:]
a[0] = 8
a[1][1] = 9

问:此时 a 和 b 分别是多少?

正确答案是 a 为 [8, [1, 9], 3],b 为 [0, [1, 9], 3]。发现没?b 的第二个元素也被改变了。想想是为什么?不明白的话看下图

正确的复制嵌套元素的方法是进行「深复制」(deep copy),方法是

import copy

a = [0, [1, 2], 3]
b = copy.deepcopy(a)
a[0] = 8
a[1][1] = 9

2、引用 VS 拷贝:

(1)没有限制条件的分片表达式(L[:])能够复制序列,但此法只能浅层复制。

(2)字典 copy 方法,D.copy() 能够复制字典,但此法只能浅层复制

(3)有些内置函数,例如 list,能够生成拷贝 list(L)

(4)copy 标准库模块能够生成完整拷贝:deepcopy 本质上是递归 copy

(5)对于不可变对象和可变对象来说,浅复制都是复制的引用,只是因为复制不变对象和复制不变对象的引用是等效的(因为对象不可变,当改变时会新建对象重新赋值)。所以看起来浅复制只复制不可变对象(整数,实数,字符串等),对于可变对象,浅复制其实是创建了一个对于该对象的引用,也就是说只是给同一个对象贴上了另一个标签而已。

L = [1, 2, 3]
D = {‘a‘:1, ‘b‘:2}
A = L[:]
B = D.copy()
print "L, D"
print  L, D
print "A, B"
print A, B
print "--------------------"
A[1] = ‘NI‘
B[‘c‘] = ‘spam‘
print "L, D"
print  L, D
print "A, B"
print A, B

L, D
[1, 2, 3] {‘a‘: 1, ‘b‘: 2}
A, B
[1, 2, 3] {‘a‘: 1, ‘b‘: 2}
--------------------
L, D
[1, 2, 3] {‘a‘: 1, ‘b‘: 2}
A, B
[1, ‘NI‘, 3] {‘a‘: 1, ‘c‘: ‘spam‘, ‘b‘: 2}

3、增强赋值以及共享引用:

x = x + y,x 出现两次,必须执行两次,性能不好,合并必须新建对象 x,然后复制两个列表合并

属于复制/拷贝

x += y,x 只出现一次,也只会计算一次,性能好,不生成新对象,只在内存块末尾增加元素。

当 x、y 为list时, += 会自动调用 extend 方法进行合并运算,in-place change。

属于共享引用

L = [1, 2]
M = L
L = L + [3, 4]
print L, M
print "-------------------"
L = [1, 2]
M = L
L += [3, 4]
print L, M

[1, 2, 3, 4] [1, 2]
-------------------
[1, 2, 3, 4] [1, 2, 3, 4]

4、python 从 2k 到 3k,语句变函数引发的变量作用域问题

先看段代码:

def test():
    a = False
    exec ("a = True")
    print ("a = ", a)
test()

b = False
exec ("b = True")
print ("b = ", b)

在 python 2k 和 3k 下 你会发现他们的结果不一样:

2K:
a =  True
b =  True

3K:
a =  False
b =  True

这是为什么呢?

因为 3k 中 exec 由语句变成函数了,而在函数中变量默认都是局部的,也就是说

你所见到的两个 a,是两个不同的变量,分别处于不同的命名空间中,而不会冲突。

具体参考 《learning python》P331-P332

知道原因了,我们可以这么改改:

def test():
    a = False
    ldict = locals()
    exec("a=True",globals(),ldict)
    a = ldict[‘a‘]
    print(a)

test()

b = False
exec("b = True", globals())
print("b = ", b)

这个问题在  stackoverflow 上已经有人问了,而且 python 官方也有人报了 bug。。。

具体链接在下面:

http://stackoverflow.com/questions/7668724/variables-declared-in-execed-code-dont-become-local-in-python-3-documentatio

http://bugs.python.org/issue4831

http://stackoverflow.com/questions/1463306/how-does-exec-work-with-locals

这是一个典型的 python 2k 移植到 3k 不兼容的案例,类似的还有很多,也算是移植的坑吧~

具体的 2k 与 3k 有哪些差异可以看这里:

使用 2to3 将代码移植到 Python 3

http://woodpecker.org.cn/diveintopython3/porting-code-to-python-3-with-2to3.html

5、深入理解 python 变量作用域及其陷阱

5.1 可变对象 & 不可变对象

在Python中,对象分为两种:可变对象和不可变对象,不可变对象包括int,float,long,str,tuple等,可变对象包括list,set,dict等。需要注意的是:这里说的不可变指的是值的不可变。对于不可变类型的变量,如果要更改变量,则会创建一个新值,把变量绑定到新值上,而旧值如果没有被引用就等待垃圾回收。另外,不可变的类型可以计算hash值,作为字典的key。可变类型数据对对象操作的时候,不需要再在其他地方申请内存,只需要在此对象后面连续申请(+/-)即可,也就是它的内存地址会保持不变,但区域会变长或者变短。

>>> a = ‘xianglong.me‘
>>> id(a)
140443303134352
>>> a = ‘1saying.com‘
>>> id(a)
140443303131776
# 重新赋值之后,变量a的内存地址已经变了
# ‘xianglong.me‘是str类型,不可变,所以赋值操作知识重新创建了str ‘1saying.com‘对象,然后将变量a指向了它
 
>>> a_list = [1, 2, 3]
>>> id(a_list)
140443302951680
>>> a_list.append(4)
>>> id(a_list)
140443302951680
# list重新赋值之后,变量a_list的内存地址并未改变
# [1, 2, 3]是可变的,append操作只是改变了其value,变量a_list指向没有变

5.2 函数值传递

def func_int(a):
    a += 4
 
def func_list(a_list):
    a_list[0] = 4
 
t = 0
func_int(t)
print t
# output: 0
 
t_list = [1, 2, 3]
func_list(t_list)
print t_list
# output: [4, 2, 3]

对于上面的输出,不少Python初学者都比较疑惑:第一个例子看起来像是传值,而第二个例子确实传引用。其实,解释这个问题也非常容易,主要是因为可变对象和不可变对象的原因:对于可变对象,对象的操作不会重建对象,而对于不可变对象,每一次操作就重建新的对象。

在函数参数传递的时候,Python其实就是把参数里传入的变量对应的对象的引用依次赋值给对应的函数内部变量。参照上面的例子来说明更容易理解,func_int中的局部变量"a"其实是全部变量"t"所指向对象的另一个引用,由于整数对象是不可变的,所以当func_int对变量"a"进行修改的时候,实际上是将局部变量"a"指向到了整数对象"1"。所以很明显,func_list修改的是一个可变的对象,局部变量"a"和全局变量"t_list"指向的还是同一个对象。

5.3 为什么修改全局的dict变量不用global关键字

为什么修改字典d的值不用global关键字先声明呢?

s = ‘foo‘
d = {‘a‘:1}
def f():
    s = ‘bar‘
    d[‘b‘] = 2
f()
print s  # foo
print d  # {‘a‘: 1, ‘b‘: 2}

这是因为,在s = ‘bar‘这句中,它是“有歧义的“,因为它既可以是表示引用全局变量s,也可以是创建一个新的局部变量,所以在python中,默认它的行为是创建局部变量,除非显式声明global,global定义的本地变量会变成其对应全局变量的一个别名,即是同一个变量。

在d[‘b‘]=2这句中,它是“明确的”,因为如果把d当作是局部变量的话,它会报KeyError,所以它只能是引用全局的d,故不需要多此一举显式声明global。

上面这两句赋值语句其实是不同的行为,一个是rebinding(不可变对象), 一个是mutation(可变对象).

但是如果是下面这样:

d = {‘a‘:1}
def f():
    d = {}
    d[‘b‘] = 2
f()
print d  # {‘a‘: 1}

在d = {}这句,它是”有歧义的“了,所以它是创建了局部变量d,而不是引用全局变量d,所以d[‘b‘]=2也是操作的局部变量。

推而远之,这一切现象的本质就是”它是否是明确的“。

仔细想想,就会发现不止dict不需要global,所有”明确的“东西都不需要global。因为int类型str类型之类的不可变对象,每一次操作就重建新的对象,他们只有一种修改方法,即x = y, 恰好这种修改方法同时也是创建变量的方法,所以产生了歧义,不知道是要修改还是创建。而dict/list/对象等可变对象,操作不会重建对象,可以通过dict[‘x‘]=y或list.append()之类的来修改,跟创建变量不冲突,不产生歧义,所以都不用显式global。

5.4 可变对象 list 的 = 和 append/extend 差别在哪?

接上面 5.3 的理论,下面咱们再看一例常见的错误:

# coding=utf-8
# 测试utf-8编码
import sys
reload(sys)
sys.setdefaultencoding(‘utf-8‘)

list_a = []
def a():
    list_a = [1]      ## 语句1
a()
print list_a    # []

print "======================"

list_b = []
def b():
    list_b.append(1)    ## 语句2
b()
print list_b    # [1]

大家可以看到为什么 语句1 不能改变 list_a 的值,而 语句2 却可以?他们的差别在哪呢?

因为 = 创建了局部变量,而 .append() 或者 .extend() 重用了全局变量。

5.5 陷阱:使用可变的默认参数

我多次见到过如下的代码:

def foo(a, b, c=[]):
# append to c
# do some more stuff

永远不要使用可变的默认参数,可以使用如下的代码代替:

def foo(a, b, c=None):
    if c is None:
        c = []
    # append to c
    # do some more stuff

‍‍与其解释这个问题是什么,不如展示下使用可变默认参数的影响:‍‍

In[2]: def foo(a, b, c=[]):
...        c.append(a)
...        c.append(b)
...        print(c)
...
In[3]: foo(1, 1)
[1, 1]
In[4]: foo(1, 1)
[1, 1, 1, 1]
In[5]: foo(1, 1)
[1, 1, 1, 1, 1, 1]

同一个变量c在函数调用的每一次都被反复引用。这可能有一些意想不到的后果。

原文地址:https://www.cnblogs.com/guodengjian/p/9142033.html

时间: 2024-10-13 21:56:22

python 深入理解 赋值、引用、拷贝、作用域的相关文章

Python学习笔记 | 变量 + 引用 + 拷贝 + 作用域

在Python中,变量是没有类型的,在使用变量的时候,不需要提前声明,只需要给这个变量赋值即可.但是,当用变量的时候,必须要给这个变量赋值:如果只写一个变量,而没有赋值,那么Python认为这个变量没有定义(not defined). 一.变量和对象 1. 可变对象和不可变对象 在Python中,对象分为两种:可变对象和不可变对象,不可变对象包括int,float,long,str,tuple等,可变对象包括list,set,dict等.需要注意的是:这里说的不可变指的是值的不可变.对于不可变类

Python中的赋值和拷贝

赋值 在python中,赋值就是建立一个对象的引用,而不是将对象存储为另一个副本.例如: >>> a=[1,2,3] >>> b=a >>> c=a 对象是[1,2,3],分别由a.b.c三个变量其建立了对应的引用关系.而三个变量都不独占对象[1,2,3],或者说,可以通过任何一个变量来修改[1,2,3]这个对象. >>> c.append(4) >>> c [1, 2, 3, 4] >>> a [

python编程之赋值和拷贝的区别概述及操作excel数据库(图)

python编程之赋值和拷贝的区别概述及操作excel数据库(图)一.赋值在Python中,对象的赋值就是简单的对象引用,这点和C++不同,如下所示:a = [1,2,"hello",['python', 'C++']] b = a在上述情况下,a和b是一样的,他们指向同一片内存,b不过是a的别名,是引用.我们可以使用bisa 去判断,返回True,表明他们地址相同,内容相同,也可以使用id()函数来查看两个列表的地址是否相同.赋值操作(包括对象作为参数.返回值)不会开辟新的内存空间,

python中的“赋值与深浅拷贝”

Python中,赋值与拷贝(深/浅拷贝)之间是有差异的,这主要源于数据在内存中的存放问题,本文将对此加以探讨. 1 赋值(添加名字) 赋值不会改变内存中数据存放状态,比如在内存中存在一个名为data的数据,此时若执行语句data_01 = data,则现在该份数据有了两个名称(data和data_01),其余都不发生改变,使用任何一个名称对数据进行操作,那么用另外一个名称拿数据时,数据会呈现之间发生的改变.示例如下: 图中,给列表分配了两个名称a与b,对a做改变时b会同样改变,对b做改变时a也会

理解js中的作用域以及初探闭包

前言 对于js中的闭包,无论是老司机还是小白,我想,见得不能再多了,然而有时三言两语却很难说得明白,反正在我初学时是这样的,脑子里虽有概念,但是却道不出个所以然来,在面试中经常会被用来吊自己的胃口,考察基础,虽然网上自己也看过不少相关闭包的文章,帖子,但貌似这玩意,越看越复杂,满满逼格高,生涉难懂的专业词汇常常把自己带到沟里去了,越看越迷糊,其实终归结底,用杨绛先生的一句话就是:"你的问题在于代码写得太少,书读得不够多",其实在我看来前者是主要的,是后者的检验, 自知目标搬砖20年(还

Vim 中的变量赋值、引用与作用域

使用 let 进行变量赋值,echo 打印变量的值, unlet 销毁变量. 对于 Vim 选项还可用 set 来更方便地操作,比如 set {option}, set no{option}, set {option}?. 普通变量可以直接引用,环境变量要加前缀 $.寄存器变量要加前缀 @.Vim 选项要加前缀 &. 变量默认作用域取决于定义的位置,函数内则为函数作用域,外部则为全局变量. 赋值和引用变量时可以使用 b:,g:,l:,t: 等前缀来指定要操作哪个作用域的变量. 和其他编程语言一样

Python中的对象的拷贝赋值操作

Python中的赋值也分传值与传地址. 用=时,传的是地址,当两者绑定到一起,其中一个发生改变时,另一个也会改变. 如: x = [1, 2, 3, 4] y = x y[0] = 5 print(x) 这时候的结果显示的是 [5, 2, 3, 4] 若要仅仅传值,则要用copy函数. x = [1, 2, 3, 4] y = x.copy() y[0] = 5 print(x) 这时候的结果就显示的是 [1, 2, 3, 4],即x的值没有改变.

Python中的赋值、浅拷贝、深拷贝

在理解浅拷贝和深拷贝之前,首先要理解学习一下变量在Python中是怎样存储的: 变量的类型是分值引用与地址引用两种. python的一切变量都是对象,变量的存储,采用了地址引用的方式,存储的只是一个变量的值所在的内存地址,而不是这个变量的只本身. 在Python中,是有多种数据类型:bool.int.long.float.string.list.dict.tuple.set; 其中可分为基本数据类型和复杂数据结构: 基本数据类型:bool.int.long.float.string; 复杂数据结

python基础:名称空间与作用域

Python的变量定义后都有自己的作用域,每个作用域内都有名字空间.名称空间就是变量名称与对象的关联关系.Python中使用变量名引用对象,需要使用该变量时,就在命名空间中进行搜索,获取对应的对象.从目前python的实现上来讲,内部使用了字典,但是并不保证以后会更改实现,所以说现阶段,命名空间是一个字典(dictionary),它的键就是变量名,它的值就是那些变量的值.在一个Python程序运行中,至少有4个scopes是存在的. 直接访问一个变量可能在这四个namespace中逐一搜索. L