The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
A binary search tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node‘s key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node‘s key.
- Both the left and right subtrees must also be binary search trees.
Given any two nodes in a BST, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line LCA of U and V is A.
if the LCA is found and A
is the key. But if A
is one of U and V, print X is an ancestor of Y.
where X
is A
and Y
is the other node. If U or V is not found in the BST, print in a line ERROR: U is not found.
or ERROR: V is not found.
or ERROR: U and V are not found.
.
Sample Input:
6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
#include<iostream> #include<algorithm> #include<cstdio> #include<map> using namespace std; typedef struct NODE{ struct NODE* lchild, *rchild; int data; }node; int M, N; int pre[10010], in[10010]; map<int, int>mp; node* create(int preL, int preR, int inL, int inR){ if(preL > preR) return NULL; node* root = new node; root->data = pre[preL]; int mid; for(int i = inL; i <= inR; i++){ if(in[i] == root->data){ mid = i; break; } } int len = mid - inL; root->lchild = create(preL + 1, preL + len, inL, mid - 1); root->rchild = create(preL + len + 1, preR, mid + 1, inR); return root; } node* find(node* root, int u, int v){ if(root == NULL || root->data == u || root->data == v) return root; node* ll = find(root->lchild, u, v); node* rr = find(root->rchild, u, v); if(ll != NULL && rr != NULL){ return root; } if(ll != NULL){ return ll; } if(rr != NULL){ return rr; } } int main(){ scanf("%d%d", &M, &N); for(int i = 0; i < N; i++){ scanf("%d", &in[i]); pre[i] = in[i]; mp[pre[i]] = 1; } sort(in, in + N); node* root = create(0, N - 1, 0, N - 1); for(int i = 0; i < M; i++){ int u, v; scanf("%d%d", &u, &v); if(mp.count(u) == 0 && mp.count(v) == 0){ printf("ERROR: %d and %d are not found.\n", u, v); }else if(mp.count(u) == 0){ printf("ERROR: %d is not found.\n",u ); }else if(mp.count(v) == 0){ printf("ERROR: %d is not found.\n",v); }else{ node* ans = find(root, u, v); if(ans->data != u && ans->data != v){ printf("LCA of %d and %d is %d.\n", u, v, ans->data); }else if(ans->data == u){ printf("%d is an ancestor of %d.\n", u, v); }else{ printf("%d is an ancestor of %d.\n", v, u); } } } cin >> N; return 0; }
总结:
1、题意:给出一个BST的先序序列,再给出两个点u、v,要求在BST中找出uv的最低公共祖先。
2、BST已知先序建树有两种方法,1)先序序列的顺序就是插入顺序,直接依次插入。2)对先序进行排序得到中序序列(BST的中序是从小到大的有序序列),由先序和中序进行递归建树。由于本题的N个数很大,使用insert方法会超时,尤其是在树高度为N时,复杂度为O(n^2)。所以最好采用先序+中序建树。
3、找最低的公共祖先。这种类型的任务一般采用后序递归遍历的办法:先处理左子树,再处理右子树,等左右子树都完成后,综合左右子树返回的信息与root的信息进行某些处理,再返回本层递归的结果。具体到本题,uv只有两种情况:1)即uv分别在某w节点的左右子树,则w为所求。2)uv本身就有祖先后代关系,则若u为祖先,u即为所求。
后序递归,若root为NULL或uv时,说明查找失败或成功,直接返回root。否则说明root为普通节点,先对root的左右子树分别查找。若左右子树都不空时,说明uv分别在root的左右两侧子树,则root即为所求。否则,说明uv在root的一侧子树,若在root的左侧,则将root左侧的查找结果返回。
原文地址:https://www.cnblogs.com/zhuqiwei-blog/p/9567064.html