人工智能之基于face_recognition的人脸检测与识别

不久乘高铁出行,看见高铁火车站已经实现了“刷脸进站”,而且效率很高,很感兴趣,今天抽时间研究一下,其实没那么复杂。

我基本上是基于https://github.com/ageitgey/face_recognition上的资料和源码做一些尝试和试验。

首先,需要配置我们的python环境,我悬着的python27(比较稳定),具体过程不多说了。

然后,需要安装这次的主角face_recognition库,这个的安装花了我不少时间,需要注意一下几点(按照本人的环境):

  1,首先,安装visual studio 2015,因为vs2015默认只安装c#相关组件,所以需要安装c++相关组件。

    ps:vs2015安装c++相关组件的方法:在vs2015中新建c++项目,出现下面场景

    

    选择第二项,确定后就会自动安装。

    为什么需要安装c++,因为安装face_recognition时会先安装dlib,dlib是基于c++的一个库。

  2,安装cmake(一个跨平台编译工具),然后需要将cmake的安装路径加入到系统环境变量path中去。

最后,就可以直接在dos中执行安装命令了(需要切换到python目录下的Script目录下):pip install  face_recognition,命令会自动帮你安装好需要的dlib库。 

到此为止,我们完成了face_recognition安装工作。

---------------------------------------------------------------分割线----------------------------------------------------------------------------------

下面给出几个实例来逐步了解“人脸识别”:

1.一行代码实现“人脸识别”

在Python目录中新建两个文件夹:分别表示“已知姓名的人”和“未知姓名的人”,图片以额、人名命名,如下:

接下来,我们通过“认识的人”来识别“不认识的人”:

结果表明:1.jpg不认识,3.jpg是obama,unkown.jpg中有两个人,一个是obama,另一个不认识

结果还挺准确的!很给力!!

2.识别图片中所有的人脸,并显示出来

import Image
import face_recognition
image = face_recognition.load_image_file(‘F:/Python27/Scripts/all.jpg‘)
face_locations = face_recognition.face_locations(image)

#face_locations =face_recognition.

#face_locations(image,number_of_times_to_upsample=0,model=‘cnn‘)
print(‘i found {} face(s) in this photograph.‘.format(len(face_locations)))
for face_location in face_locations:
    top,right,bottom,left = face_location
    print(‘A face is located at pixel location Top:{},Left:{},Bottom:{},Right:{}‘.format(top,right,bottom,left))
    face_image = image[top:bottom,left:right]
    pil_image=Image.fromarray(face_image)
    pil_image.show()

避坑指南:import Image需要先安装PIL库,在pycharm中安装的时候会报错(因为pil没有64位的版本),这时我们安装Pillow-PIL就好了。

我们的all.jpg如下:

执行以下,看看结果:

没有错,总共12个人脸都被识别出来了!!!

3.给照片“美颜”

face_recognition可以识别人像的下巴,眼睛,鼻子,嘴唇,眼球等区域,包含以下这些个特征:

  facial_features = [ ‘chin‘, ‘left_eyebrow‘, ‘right_eyebrow‘, ‘nose_bridge‘, ‘nose_tip‘, ‘left_eye‘, ‘right_eye‘, ‘top_lip‘, ‘bottom_lip‘ ]

利用这些特征属性,可以轻松的给人像“美颜”

from PIL import Image, ImageDraw
face_recognition
import face_recognition

image = face_recognition.load_image_file("F:/Python27/Scripts/known_people/obama.jpg")

#查找图像中所有面部的所有面部特征
face_landmarks_list = face_recognition.face_landmarks(image)

for face_landmarks in face_landmarks_list:
    pil_image = Image.fromarray(image)
    d = ImageDraw.Draw(pil_image, ‘RGBA‘)

    #让眉毛变成了一场噩梦
    d.polygon(face_landmarks[‘left_eyebrow‘], fill=(68, 54, 39, 128))
    d.polygon(face_landmarks[‘right_eyebrow‘], fill=(68, 54, 39, 128))
    d.line(face_landmarks[‘left_eyebrow‘], fill=(68, 54, 39, 150), width=5)
    d.line(face_landmarks[‘right_eyebrow‘], fill=(68, 54, 39, 150), width=5)

    #光泽的嘴唇
    d.polygon(face_landmarks[‘top_lip‘], fill=(150, 0, 0, 128))
    d.polygon(face_landmarks[‘bottom_lip‘], fill=(150, 0, 0, 128))
    d.line(face_landmarks[‘top_lip‘], fill=(150, 0, 0, 64), width=8)
    d.line(face_landmarks[‘bottom_lip‘], fill=(150, 0, 0, 64), width=8)

    #闪耀眼睛
    d.polygon(face_landmarks[‘left_eye‘], fill=(255, 255, 255, 30))
    d.polygon(face_landmarks[‘right_eye‘], fill=(255, 255, 255, 30))

    #涂一些眼线
    d.line(face_landmarks[‘left_eye‘] + [face_landmarks[‘left_eye‘][0]], fill=(0, 0, 0, 110), width=6)
    d.line(face_landmarks[‘right_eye‘] + [face_landmarks[‘right_eye‘][0]], fill=(0, 0, 0, 110), width=6)

    pil_image.show()

执行下看看结果:

有点辣眼睛!!!!

4.利用笔记本摄像头识别人像

回到前面说的高铁站的“刷脸”,其实就是基于摄像头的“人像识别”。

这里要调用电脑的摄像头,而且涉及一些计算机视觉系统的计算,所以我们要先安装opencv库,

安装方法:

pip install --upgrade setuptools
pip install numpy Matplotlib
pip install opencv-python

 ps:如果报错:EnvironmentError: [Errno 13] Permission denied: 在install后加上--user即可

小技巧:可以在python命令行中用 import site; site.getsitepackages()来确定当前的python环境的site-packages目录的位置

目的:这里我们需要用摄像头识别自己,那么首先需要有一张自己的照片,我将我的照片命名为mike.jpg,然后使用摄像头来识别我自己。

看看代码:

import face_recognition
import cv2

# This is a demo of running face recognition on live video from your webcam. It‘s a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
#   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
#   2. Only detect faces in every other frame of video.

# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It‘s only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don‘t require it instead.

# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)

# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("F:/Python27/Scripts/known_people/obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]

# Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("F:/Python27/Scripts/known_people/mike.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]

# Create arrays of known face encodings and their names
known_face_encodings = [
    obama_face_encoding,
    biden_face_encoding
]
known_face_names = [
    "Barack Obama",
    "mike"
]

# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

while True:
    # Grab a single frame of video
    ret, frame = video_capture.read()

    # Resize frame of video to 1/4 size for faster face recognition processing
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
    rgb_small_frame = small_frame[:, :, ::-1]

    # Only process every other frame of video to save time
    if process_this_frame:
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(rgb_small_frame)
        face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)

        face_names = []
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
            name = "Unknown"

            # If a match was found in known_face_encodings, just use the first one.
            if True in matches:
                first_match_index = matches.index(True)
                name = known_face_names[first_match_index]

            face_names.append(name)

    process_this_frame = not process_this_frame

    # Display the results
    for (top, right, bottom, left), name in zip(face_locations, face_names):
        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
        top *= 4
        right *= 4
        bottom *= 4
        left *= 4

        # Draw a box around the face
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

        # Draw a label with a name below the face
        cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
        font = cv2.FONT_HERSHEY_DUPLEX
        cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

    # Display the resulting image
    cv2.imshow(‘Video‘, frame)

    # Hit ‘q‘ on the keyboard to quit!
    if cv2.waitKey(1) & 0xFF == ord(‘q‘):
        break

# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

只想看看结果:

看来,我被识别成功了。看起来有点小激动呢。

通过上面四个小例子基本了解face_recognition的用法,这只是小试牛刀,具体在现实中的应用要复杂很多,

我们需要大量的人脸数据,会涉及到机器学习和数学算法等等,而且根据应用场景的不同也会出现很多不同的要求。

这里只是一起学习分享,期待后续关于"人工智能"的内容。

原文地址:https://www.cnblogs.com/miketwais/p/face_recognition.html

时间: 2024-11-09 06:21:44

人工智能之基于face_recognition的人脸检测与识别的相关文章

基于OpenCv的人脸检测、识别系统学习制作笔记之三

1.在windows下编写人脸检测.识别系统.目前已完成:可利用摄像头提取图像,并将人脸检测出来,未进行识别. 2.在linux下进行编译在windows环境下已经能运行的代码. 为此进行了linux系统下OpenCv的安装. 在linux中安装OpenCv遇到了很多问题,已经解决,但是花费了不少时间.目前:可以在linux下编译OpenCv项目,但是运行生成的程序时出现问题.初步认定为采用了虚拟机而导致运行内存不足,程序直接崩溃,将继续解决这个问题. 花费较多时间安装OpenCv是有必要的,为

基于OpenCv的人脸检测、识别系统学习制作笔记之一

基于OpenCv从视频到摄像头的人脸检测 在OpenCv中读取视频文件和读取摄像头的的视频流然后在放在一个窗口中显示结果其实是类似的一个实现过程. 先创建一个指向CvCapture结构的指针 CvCapture *capture; 再用两个函数就可以分别获取到视频文件或者摄像头的一些状态信息,然后把这些信息放进去之前指向的结构体 视频文件 capture = cvCreateCameraCapture(0); 打开摄像头 capture = cvCreateFileCapture(argv[1]

基于Opencv的人脸检测及识别

一.实验目的:我这里完成的是,将8张人脸图片(4组,每组两张)存入库中,选取1张图片,程序识别出与其匹配的另一张. 这里介绍分三个步骤完成该工作,①程序读取摄像头.拍照 ②程序从电脑文档中读取图片   ③检测人脸,并用红框框出人脸 ④使用感知哈希算法匹配最相似的图片 二.实验环境: Win 7(x64).visual studio 2010.openCV-2.4.3 使用语言:C++ 三.实验准备:①安装好vs2010,本文不予介绍.   ②配置opencv : 1'进入官网下载http://o

基于opencv的人脸检测的web应用

参考资料 https://github.com/bsdnoobz/web-based-face-detect http://opencv-code.com/projects/web-based-interface-for-face-detection-with-opencv/ http://www.cnblogs.com/findingsea/archive/2012/03/31/2427833.html 流程如下图 背景知识 php调用exe的返回 <html> <body> &

人脸检测及识别python实现系列(4)——卷积神经网络(CNN)入门

人脸检测及识别python实现系列(4)--卷积神经网络(CNN)入门 上篇博文我们准备好了2000张训练数据,接下来的几节我们将详细讲述如何利用这些数据训练我们的识别模型.前面说过,原博文给出的训练程序使用的是keras库,对我的机器来说就是tensorflow版的keras.训练程序建立了一个包含4个卷积层的神经网络(CNN),程序利用这个网络训练我的人脸识别模型,并将最终训练结果保存到硬盘上.在我们实际动手操练之前我们必须先弄明白一个问题--什么是卷积神经网络(CNN)? CNN(Conv

人脸检测及识别python实现系列(2)——识别出人脸

人脸检测及识别python实现系列(2)--识别出人脸 从实时视频流中识别出人脸区域,从原理上看,其依然属于机器学习的领域之一,本质上与谷歌利用深度学习识别出猫没有什么区别.程序通过大量的人脸图片数据进行训练,利用数学算法建立建立可靠的人脸特征模型,如此即可识别出人脸.幸运的是,这些工作OpenCV已经帮我们做了,我们只需调用对应的API函数即可,先给出代码: #-*- coding: utf-8 -*- import cv2 import sys from PIL import Image d

qml+opencv(三)人脸检测与识别

ccface 介绍 这个我闲的蛋疼无聊做的一个人脸检测和识别的小程序. 环境 Qt5+opencv2.4.9 使用 通过File菜单打开关闭摄像头 ID填入标识,save保存 select 识别 检测 save 识别 程序地址: https://git.oschina.net/zhouX/ccface.git

21个项目玩转深度学习:基于TensorFlow的实践详解06—人脸检测和识别——数据集

书籍:<21个项目玩转深度学习:基于TensorFlow的实践详解> 人脸检测 FDDB FDDB是UMass的数据集,被用来做人脸检测(Face Detection).这个数据集比较大,比较有挑战性.而且作者提供了程序用来评估检测结果,所以在这个数据上面比较算法也相对公平. 2845 张图片,其中包含了 5171 张人脸: 包含了各种遮挡,高难度的姿态,低分辨率以及对焦模糊的人脸: 用椭圆来标定人脸区域: 同时包括灰度图和彩色图. 人脸识别 LFW 户外标记人脸数据集LFW (Labeled

基于openCV实现人脸检测

openCV的人脸识别主要通过Haar分类器实现,当然,这是在已有训练数据的基础上.openCV安装在 opencv/opencv/sources/data/haarcascades_cuda(或haarcascades)中存在预先训练好的物体检测器(xml格式),包括正脸.侧脸.眼睛.微笑.上半身.下半身.全身等. openCV的的Haar分类器是一个监督分类器,首先对图像进行直方图均衡化并归一化到同样大小,然后标记里面是否包含要监测的物体.它首先由Paul Viola和Michael Jon