训练模型:交叉验证

一.基本概述

用交叉验证的目的是为了得到可靠稳定的模型。

消除测试集与训练集选择的不好,导致训练的模型不好。

二.k折交叉验证

K折交叉验证,初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个子样本验证一次,平均K次的结果或者使用其它结合方式,最终得到一个单一估测。

这个方法的优势在于,同时重复运用随机产生的子样本进行训练和验证,每次的结果验证一次,10折交叉验证是最常用的。

k 折交叉验证通过对 k 个不同分组训练的结果进行平均来减少方差,因此模型的性能对数据的划分就不那么敏感。

  • 第一步,不重复抽样将原始数据随机分为 k 份。
  • 第二步,每一次挑选其中 1 份作为测试集,剩余 k-1 份作为训练集用于模型训练。
  • 第三步,重复第二步 k 次,这样每个子集都有一次机会作为测试集,其余机会作为训练集。
  • 在每个训练集上训练后得到一个模型,
  • 用这个模型在相应的测试集上测试,计算并保存模型的评估指标,
  • 第四步,计算 k 组测试结果的平均值作为模型精度的估计,并作为当前 k 折交叉验证下模型的性能指标。

k 一般取 10, 
数据量小的时候,k 可以设大一点,这样训练集占整体比例就比较大,不过同时训练的模型个数也增多。 
数据量大的时候,k 可以设小一点。

当 k=m 即样本总数时,叫做 3. 留一法(Leave one out cross validation),每次的测试集都只有一个样本,要进行 m 次训练和预测。 
这个方法用于训练的数据只比整体数据集少了一个样本,因此最接近原始样本的分布。 
但是训练复杂度增加了,因为模型的数量与原始数据样本数量相同。 
一般在数据缺乏时使用。

此外:

  1. 多次 k 折交叉验证再求均值,例如:10 次 10 折交叉验证,以求更精确一点。
  2. 划分时有多种方法,例如对非平衡数据可以用分层采样,就是在每一份子集中都保持和原始数据集相同的类别比例。
  3. 模型训练过程的所有步骤,包括模型选择,特征选择等都是在单个折叠 fold 中独立执行的。

还有一种比较特殊的交叉验证方式,Bootstrapping: 通过自助采样法,即在含有 m 个样本的数据集中,每次随机挑选一个样本,再放回到数据集中,再随机挑选一个样本,这样有放回地进行抽样 m 次,组成了新的数据集作为训练集。

这里会有重复多次的样本,也会有一次都没有出现的样本,原数据集中大概有 36.8% 的样本不会出现在新组数据集中。

优点是训练集的样本总数和原数据集一样都是 m,并且仍有约 1/3 的数据不被训练而可以作为测试集。 
缺点是这样产生的训练集的数据分布和原数据集的不一样了,会引入估计偏差。 
此种方法不是很常用,除非数据量真的很少。

原文地址:https://www.cnblogs.com/xyp666/p/9217610.html

时间: 2024-10-13 01:48:50

训练模型:交叉验证的相关文章

用交叉验证改善模型的预测表现

预测模型为何无法保持稳定? 让我们通过以下几幅图来理解这个问题: 此处我们试图找到尺寸(size)和价格(price)的关系.三个模型各自做了如下工作: 第一个模型使用了线性等式.对于训练用的数据点,此模型有很大误差.这样的模型在初期排行榜和最终排行榜都会表现不好.这是"拟合不足"("Under fitting")的一个例子.此模型不足以发掘数据背后的趋势. 第二个模型发现了价格和尺寸的正确关系,此模型误差低/概括程度高. 第三个模型对于训练数据几乎是零误差.这是因

交叉验证(Cross Validation)原理小结

交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏.在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓"交叉". 那么什么时候才需要交叉验证呢?交叉验证用在数据不是很充足的时候.比如在我日常项目里面,对于普通适中问题,如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型.如果样本

paper 35 :交叉验证(CrossValidation)方法思想

交叉验证(CrossValidation)方法思想简介 以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set),首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标.常见CV的方法如下: 1).Hold-Out Method 将原始数据随机分

(数据挖掘-入门-6)十折交叉验证和K近邻

主要内容: 1.十折交叉验证 2.混淆矩阵 3.K近邻 4.python实现 一.十折交叉验证 前面提到了数据集分为训练集和测试集,训练集用来训练模型,而测试集用来测试模型的好坏,那么单一的测试是否就能很好的衡量一个模型的性能呢? 答案自然是否定的,单一的测试集具有偶然性和随机性.因此本文介绍一种衡量模型(比如分类器)性能的方法——十折交叉验证(10-fold cross validation) 什么是十折交叉验证? 假设有个数据集,需要建立一个分类器,如何验证分类器的性能呢? 将数据集随机均为

交叉验证概述

交叉验证 交叉验证(Cross-validation)主要用于建模应用中,例如PCR .PLS 回归建模中.在给定的建模样本中,拿出大部分样本进行建模型,留小部分样本用刚建立的模型进行预报,并求这小部分样本的预报误差,记录它们的平方加和. 中文名 交叉验证 外文名 Cross validation 实    质 建模应用中 特    点 PCR .PLS 回归建模中 目录 1 概念 2 基本思想 3 目的 4 常见的交叉验证形式 ? Holdout 验证 ? K-fold cross-valid

CTR预估(3)--正则,交叉验证、特征提取、变量分类

1.主要内容 2.梯度下降 (1).批量梯度下降 2.随机梯度下降 区别:就是更新变量时使用全部的数据还是一个样本进行更新 当都是凸函数的两者鲜果相同,当使用神经网络时使用SGD可以跳出局部最优解,批量梯度下降则不行: 3.mini-batch 梯度下降 噪声随着样本数量的增加而减少: 3.正则 bias就表示模型在训练时与训练数据的切合程度也就是训练模型对训练数据的准确性,bias越小契合程度就越高,当bias为0时表示所有的训练数据都可以被模型表示,但是这样也表示了一旦将模型应用新的数据集上

交叉验证 Cross-validation

对交叉验证这个问题,一直以来,不明白是怎么回事.近期看材料,涉及到了这个问题,写的通俗易懂,有种恍然大悟的感觉.下面,我写下对这个问题的理解. 现在假设这里有一堆数据,作为统计er的任务就是从这些数据中提取有用的信息.如何提取信息呢,我们的法宝就是–模型.模型在统计当中是极其重要的,学统计就是跟各种各样的模型混个脸熟.在模型的基础上,我们利用数据对模型的参数进行估计,从而通过参数化后的模型来描述数据的内在关系,了解数据内在的关系(pattern)非常必要,有助于对未来进行预测. 那么对于手里的数

机器学习-CrossValidation交叉验证详解

版权声明:本文为原创文章,转载请注明来源. 1.原理 1.1 概念 交叉验证(Cross-validation)主要用于模型训练或建模应用中,如分类预测.PCR.PLS回归建模等.在给定的样本空间中,拿出大部分样本作为训练集来训练模型,剩余的小部分样本使用刚建立的模型进行预测,并求这小部分样本的预测误差或者预测精度,同时记录它们的加和平均值.这个过程迭代K次,即K折交叉.其中,把每个样本的预测误差平方加和,称为PRESS(predicted Error Sum of Squares). 1.2

cross validation交叉验证

交叉验证是一种检测model是否overfit的方法.最常用的cross validation是k-fold cross validation. 具体的方法是: 1.将数据平均分成k份,0,1,2,,,k-1 2.使用1~k-1份数据训练模型,然后使用第0份数据进行验证. 3.然后将第1份数据作为验证数据.进行k个循环.就完成了k-fold cross validation 这个交叉验证的方法的特点是:所有的数据都参与了验证,也都参与了训练,没有浪费数据.