【转】彻底解析Android缓存机制——LruCache

彻底解析Android缓存机制——LruCache

关于Android的三级缓存,其中主要的就是内存缓存和硬盘缓存。这两种缓存机制的实现都应用到了LruCache算法,今天我们就从使用到源码解析,来彻底理解Android中的缓存机制。

一、Android中的缓存策略

一般来说,缓存策略主要包含缓存的添加、获取和删除这三类操作。如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大小都是有限的。当缓存满了之后,再想其添加缓存,这个时候就需要删除一些旧的缓存并添加新的缓存。

因此LRU(Least Recently Used)缓存算法便应运而生,LRU是近期最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些近期最少使用的缓存对象。采用LRU算法的缓存有两种:LrhCache和DisLruCache,分别用于实现内存缓存和硬盘缓存,其核心思想都是LRU缓存算法。

二、LruCache的使用

LruCache是Android 3.1所提供的一个缓存类,所以在Android中可以直接使用LruCache实现内存缓存。而DisLruCache目前在Android 还不是Android SDK的一部分,但Android官方文档推荐使用该算法来实现硬盘缓存。

1.LruCache的介绍

LruCache是个泛型类,主要算法原理是把最近使用的对象用强引用(即我们平常使用的对象引用方式)存储在 LinkedHashMap 中。当缓存满时,把最近最少使用的对象从内存中移除,并提供了get和put方法来完成缓存的获取和添加操作。

2.LruCache的使用

LruCache的使用非常简单,我们就已图片缓存为例。

 int maxMemory = (int) (Runtime.getRuntime().totalMemory()/1024);
        int cacheSize = maxMemory/8;
        mMemoryCache = new LruCache<String,Bitmap>(cacheSize){
            @Override
            protected int sizeOf(String key, Bitmap value) {
                return value.getRowBytes()*value.getHeight()/1024;
            }
        };

①设置LruCache缓存的大小,一般为当前进程可用容量的1/8。
②重写sizeOf方法,计算出要缓存的每张图片的大小。

注意:缓存的总容量和每个缓存对象的大小所用单位要一致。

三、LruCache的实现原理

LruCache的核心思想很好理解,就是要维护一个缓存对象列表,其中对象列表的排列方式是按照访问顺序实现的,即一直没访问的对象,将放在队尾,即将被淘汰。而最近访问的对象将放在队头,最后被淘汰。

如下图所示:

那么这个队列到底是由谁来维护的,前面已经介绍了是由LinkedHashMap来维护。

而LinkedHashMap是由数组+双向链表的数据结构来实现的。其中双向链表的结构可以实现访问顺序和插入顺序,使得LinkedHashMap中的<key,value>对按照一定顺序排列起来。

通过下面构造函数来指定LinkedHashMap中双向链表的结构是访问顺序还是插入顺序。

public LinkedHashMap(int initialCapacity,
                         float loadFactor,
                         boolean accessOrder) {
        super(initialCapacity, loadFactor);
        this.accessOrder = accessOrder;
    }

其中accessOrder设置为true则为访问顺序,为false,则为插入顺序。

以具体例子解释:
当设置为true时

public static final void main(String[] args) {
        LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(0, 0.75f, true);
        map.put(0, 0);
        map.put(1, 1);
        map.put(2, 2);
        map.put(3, 3);
        map.put(4, 4);
        map.put(5, 5);
        map.put(6, 6);
        map.get(1);
        map.get(2);

        for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
            System.out.println(entry.getKey() + ":" + entry.getValue());

        }
    }

输出结果:

0:0
3:3
4:4
5:5
6:6
1:1
2:2

即最近访问的最后输出,那么这就正好满足的LRU缓存算法的思想。可见LruCache巧妙实现,就是利用了LinkedHashMap的这种数据结构。

下面我们在LruCache源码中具体看看,怎么应用LinkedHashMap来实现缓存的添加,获得和删除的。

 public LruCache(int maxSize) {
        if (maxSize <= 0) {
            throw new IllegalArgumentException("maxSize <= 0");
        }
        this.maxSize = maxSize;
        this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
    }

从LruCache的构造函数中可以看到正是用了LinkedHashMap的访问顺序。

put()方法

public final V put(K key, V value) {
         //不可为空,否则抛出异常
        if (key == null || value == null) {
            throw new NullPointerException("key == null || value == null");
        }
        V previous;
        synchronized (this) {
            //插入的缓存对象值加1
            putCount++;
            //增加已有缓存的大小
            size += safeSizeOf(key, value);
           //向map中加入缓存对象
            previous = map.put(key, value);
            //如果已有缓存对象,则缓存大小恢复到之前
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }
        //entryRemoved()是个空方法,可以自行实现
        if (previous != null) {
            entryRemoved(false, key, previous, value);
        }
        //调整缓存大小(关键方法)
        trimToSize(maxSize);
        return previous;
    }

可以看到put()方法并没有什么难点,重要的就是在添加过缓存对象后,调用 trimToSize()方法,来判断缓存是否已满,如果满了就要删除近期最少使用的算法。
trimToSize()方法

 public void trimToSize(int maxSize) {
        //死循环
        while (true) {
            K key;
            V value;
            synchronized (this) {
                //如果map为空并且缓存size不等于0或者缓存size小于0,抛出异常
                if (size < 0 || (map.isEmpty() && size != 0)) {
                    throw new IllegalStateException(getClass().getName()
                            + ".sizeOf() is reporting inconsistent results!");
                }
                //如果缓存大小size小于最大缓存,或者map为空,不需要再删除缓存对象,跳出循环
                if (size <= maxSize || map.isEmpty()) {
                    break;
                }
                //迭代器获取第一个对象,即队尾的元素,近期最少访问的元素
                Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
                key = toEvict.getKey();
                value = toEvict.getValue();
                //删除该对象,并更新缓存大小
                map.remove(key);
                size -= safeSizeOf(key, value);
                evictionCount++;
            }
            entryRemoved(true, key, value, null);
        }
    }

trimToSize()方法不断地删除LinkedHashMap中队尾的元素,即近期最少访问的,直到缓存大小小于最大值。

当调用LruCache的get()方法获取集合中的缓存对象时,就代表访问了一次该元素,将会更新队列,保持整个队列是按照访问顺序排序。这个更新过程就是在LinkedHashMap中的get()方法中完成的。

先看LruCache的get()方法

get()方法

public final V get(K key) {
        //key为空抛出异常
        if (key == null) {
            throw new NullPointerException("key == null");
        }

        V mapValue;
        synchronized (this) {
            //获取对应的缓存对象
            //get()方法会实现将访问的元素更新到队列头部的功能
            mapValue = map.get(key);
            if (mapValue != null) {
                hitCount++;
                return mapValue;
            }
            missCount++;
        }

其中LinkedHashMap的get()方法如下:

public V get(Object key) {
        LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
        if (e == null)
            return null;
        //实现排序的关键方法
        e.recordAccess(this);
        return e.value;
    }

调用recordAccess()方法如下:

 void recordAccess(HashMap<K,V> m) {
            LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
            //判断是否是访问排序
            if (lm.accessOrder) {
                lm.modCount++;
                //删除此元素
                remove();
                //将此元素移动到队列的头部
                addBefore(lm.header);
            }
        }

由此可见LruCache中维护了一个集合LinkedHashMap,该LinkedHashMap是以访问顺序排序的。当调用put()方法时,就会在结合中添加元素,并调用trimToSize()判断缓存是否已满,如果满了就用LinkedHashMap的迭代器删除队尾元素,即近期最少访问的元素。当调用get()方法访问缓存对象时,就会调用LinkedHashMap的get()方法获得对应集合元素,同时会更新该元素到队头。

以上便是LruCache实现的原理,理解了LinkedHashMap的数据结构就能理解整个原理。如果不懂,可以先看看LinkedHashMap的具体实现。

原文地址:https://www.cnblogs.com/didiaoxiong/p/9128623.html

时间: 2024-10-08 08:45:02

【转】彻底解析Android缓存机制——LruCache的相关文章

Android缓存机制&amp;一个缓存框架推荐

1.先推荐一个轻量级缓存框架--ACache(ASimpleCache) ACache介绍: ACache类似于SharedPreferences,但是比SharedPreferences功能更加强大,SharedPreferences只能保存一些基本数据类型.Serializable.Bundle等数据, 而Acache可以缓存如下数据: 普通的字符串.JsonObject.JsonArray.Bitmap.Drawable.序列化的java对象,和 byte数据. 主要特色: 1:轻,轻到只

[Android] 缓存机制

移动开发本质上就是手机和服务器之间进行通信,需要从服务端获取数据.反复通过网络获取数据是比较耗时的,特别是访问比较多的时候,会极大影响了性能,Android中可通过缓存机制来减少频繁的网络操作,减少流量.提升性能. 实现原理 把不需要实时更新的数据缓存下来,通过时间或者其他因素 来判别是读缓存还是网络请求,这样可以缓解服务器压力,一定程度上提高应用响应速度,并且支持离线阅读. Bitmap的缓存 在许多的情况下(像 ListView, GridView 或 ViewPager 之类的组件 )我们

Android进阶:三、这一次,我们用最详细的方式解析Android消息机制的源码

决定再写一次有关Handler的源码 Handler源码解析 一.创建Handler对象 使用handler最简单的方式:直接new一个Handler的对象 Handler handler = new Handler(); 所以我们来看看它的构造函数的源码: public Handler() { this(null, false); } public Handler(Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { f

这一次,我们用最详细的方式解析Android消息机制的源码

Handler源码解析 一.创建Handler对象 使用handler最简单的方式:直接new一个Handler的对象 Handler handler = new Handler(); 所以我们来看看它的构造函数的源码: public Handler() { this(null, false); } public Handler(Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extend

Android 缓存

1.Android缓存机制&一个缓存框架推荐 http://blog.csdn.net/shakespeare001/article/details/51695358 2.ASimpleCache https://github.com/yangfuhai/ASimpleCache 3.Android DiskLruCache 源码解析 硬盘缓存的绝佳方案 4.Android DiskLruCache完全解析,硬盘缓存的最佳方案 5.DiskLruCache https://github.com/

Android客户端中Bitmap的下载过程和缓存机制

加载流程: if(内存命中){ 从内存中读取 }else{ create AsyncTasks,task中的多个Runnable是通过堆栈先进后出的方式来调度,而非队列式的先进先出,目的是最先加载用户最近划到或打开的图片. } AsyncTask: //do in background——该后台进程在用户scroll列表的时候会暂停,从而减小了列表划动时cpu的overhead,此方法也被ImageLoader和facebook的官方app所使用. if(磁盘缓存命中){ 从缓存中读取 }els

android消息处理机制原理解析

在android开发过程中相信屌丝程序员们都用过Handler来处理一些逻辑任务,比如发送延迟消息处理业务等逻辑,我们常用的图片加载缓存库ImageLoader和Picasso等内部也是通过Handler来最终有后台加载线程切换到主线程(UI线程)来更新页面的,今天就趁着离职有点儿时间就抽空的分析了下它的一点源码,在此总结出来.闲言少叙,书归正传! 先来谈谈Looper: Looper从源码上来看就是一个普通的Java类,它在消息机制中,顾名思义,就是一个消息循环的角色.有时候读源码,我习惯性的

手把手教你构建 Android WebView 的缓存机制 &amp; 资源预加载方案

前言 由于H5具备 开发周期短.灵活性好 的特点,所以现在 Android App大多嵌入了 Android Webview 组件进行 Hybrid 开发 但我知道你一定在烦恼 Android Webview 的性能问题,特别突出的是:加载速度慢 & 消耗流量 今天,我将针对 Android Webview 的性能问题,提出一些有效解决方案. 目录 1. Android WebView 存在什么性能问题? Android WebView 里 H5 页面加载速度慢 耗费流量 下面会详细介绍. 1.

Android三级缓存机制工具类的实现

一.三级缓存概述 (一)三级缓存的三级 第一级是内存,最快,不需要网络 第二级是本地,不需要网络 第三级是网络,需要网络请求 三级缓存机制的思想: 如果在内存中获取到数据,就不去本地和网络中获取. 如果在本地中获取到数据就不去网络中获取, 如果内存和本地中不存在数据,就要去网络中请求数据 三级缓存技术能有效节省用户的流量,但是也会增加一些内存负担. 二.使用示例展示三级缓存工具栏类的使用 程序运行后的页面: 虽然只用一个按钮和一个图片显示,但是通过测试(联网状态和断网状态对比)能知道图片是从网络