POJ 1159 Palindrome(DP LCS)

Description

A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted
into the string in order to obtain a palindrome.

As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

Input

Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters
from ‘A‘ to ‘Z‘, lowercase letters from ‘a‘ to ‘z‘ and digits from ‘0‘ to ‘9‘. Uppercase and lowercase letters are to be considered distinct.

Output

Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

Sample Input

5
Ab3bd

Sample Output

2

题目大意:求插入最少的字符使得串为palindeome(回文串)。

遇到问题要剖析其原型,此题就是正序和逆序的LCS,结果来n-commenlength.

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#define LL long long
#define inf 0x3f3f3f3f
using namespace std;
short dp[5001][5001];
char a[5005],b[5005];
int main()
{
    int n,m,x,k,i,j;
    int cla;
    while(~scanf("%d",&n))
    {
        int s=0;
        dp[0][0]=0;<span id="transmark"></span>
        scanf("%s",a);
        for(i=n-1;i>=0;i--)
        b[s++]=a[i];
        b[s]='\0';
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                if(a[i-1]==b[j-1])
                {
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else
                    dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
        cout<<n-dp[n][n]<<endl;
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-09 08:06:57

POJ 1159 Palindrome(DP LCS)的相关文章

HDU 1513 &amp;&amp; POJ 1159 Palindrome (DP+LCS+滚动数组)

题意:给定一个字符串,让你把它变成回文串,求添加最少的字符数. 析:动态规划是很明显的,就是没有了现思路,还是问的别人才知道,哦,原来要么写,既然是回文串, 那么最后正反都得是一样的,所以我们就正反求LCS,这样公共的就求出来了,那么再用总数减掉这个LCS, 那么剩下的肯定就是没有配对的了,就得必须加上了. 思路有了,这里又出现一个问题,这个求LCS,要用的空间复杂度太大了,MLE了...有了思路,还是过不了, 这个题应该用滚动数组来做,我想想在求LCS时,第一维我们只用到了i-1和i,所以呢,

POJ 1159 Palindrome(lcs加滚动数组)

Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 52350   Accepted: 18041 Description A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a

POJ 1159 Palindrome DP

Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 51913   Accepted: 17877 Description A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a

POJ - 1159 - Palindrome (LCS + 优化)

题目传送:Palindrome 思路:一看题目思路很清晰,就是求出字符串s和倒转s后的字符串t的最长公共子序列,但是一看空间开销有点大,如果开int就会爆,5000*5000有100MB了,这里可以开short int,差不多正好可以过去,还有一种做法就是弄一个滚动数组,因为求LCS,根据状态转移方程可以知道,只需要前一行和当前行就行了,所以开个2*5005就OK了,具体看代码 AC代码①: #include <cstdio> #include <cstring> #include

LCS POJ 1159 Palindrome

题目传送门 1 /* 2 LCS裸题:长度减去最大相同长度就是要插入的个数 3 */ 4 #include <cstdio> 5 #include <iostream> 6 #include <cstring> 7 #include <algorithm> 8 #include <string> 9 using namespace std; 10 11 const int MAXN = 5e3 + 10; 12 const int INF = 0

LCS(滚动数组) POJ 1159 Palindrome

题目传送门 1 /* 2 LCS裸题:长度减去最大相同长度就是要插入的个数 3 dp数组二维都开5000的话就会超内存,这里就用到了滚动数组, 4 因为在LCS的计算中,i的变化只相差1,所以可以通过对2取余来进行滚动:) 5 */ 6 #include <cstdio> 7 #include <iostream> 8 #include <cstring> 9 #include <algorithm> 10 #include <string> 1

poj 1159 Palindrome lcs+滚动数组

点击打开链接题目链接 Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 52910   Accepted: 18248 Description A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are

poj 1159 Palindrome (LCS)

链接:poj 1159 题意:给定一个字符串,求最少添加多少个字符可使得该字符串变为回文字符串 分析:设原序列S的逆序列为S' ,最少需要补充的字母数 = 原序列S的长度 - S和S'的最长公共子串长度 原因:要求最少添加几个字符,我们可以先从原串中找到一个最长回文串,然后对于原串中不属于这个回文串的字符,在它关于回文串中心的对称位置添加一个相同字符即可.那么需要添加的字符数量即为n-最长回文串长度. 最长回文串可以看作是原串中前面和后面字符的一种匹配(每个后面的字符在前面找到一个符合位置要求的

POJ 1159 Palindrome &amp;&amp; HDU 1159 Common Subsequence

1.先说说杭电的1159吧! 这道题是基础动规,比较简单! 就是要你求最长的公共子序列(不要优化) 动态转移方程: dp[i+1][j+1]=(a[i]=b[i])?dp[i][j]+1:max(dp[i+1][j],dp[i][j+1]) AC代码: #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; #define N 520 char a[N],b[N]; in