RDD之七:Spark容错机制

引入

一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新。 
面向大规模数据分析,数据检查点操作成本很高,需要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同时还需要消耗更多的存储资源。 
因此,Spark选择记录更新的方式。但是,如果更新粒度太细太多,那么记录更新成本也不低。因此,RDD只支持粗粒度转换,即只记录单个块上执行的单个操作,然后将创建RDD的一系列变换序列(每个RDD都包含了他是如何由其他RDD变换过来的以及如何重建某一块数据的信息。因此RDD的容错机制又称“血统(Lineage)”容错)记录下来,以便恢复丢失的分区。 
Lineage本质上很类似于数据库中的重做日志(Redo Log),只不过这个重做日志粒度很大,是对全局数据做同样的重做进而恢复数据。

Lineage机制

Lineage简介

相比其他系统的细颗粒度的内存数据更新级别的备份或者LOG机制,RDD的Lineage记录的是粗颗粒度的特定数据Transformation操作(如filter、map、join等)行为。当这个RDD的部分分区数据丢失时,它可以通过Lineage获取足够的信息来重新运算和恢复丢失的数据分区。因为这种粗颗粒的数据模型,限制了Spark的运用场合,所以Spark并不适用于所有高性能要求的场景,但同时相比细颗粒度的数据模型,也带来了性能的提升。

两种依赖关系

RDD在Lineage依赖方面分为两种:窄依赖(Narrow Dependencies)与宽依赖(Wide Dependencies,源码中称为Shuffle 
Dependencies),用来解决数据容错的高效性。

  • 窄依赖是指父RDD的每一个分区最多被一个子RDD的分区所用,表现为一个父RDD的分区对应于一个子RDD的分区 
    或多个父RDD的分区对应于一个子RDD的分区,也就是说一个父RDD的一个分区不可能对应一个子RDD的多个分区。 
    1个父RDD分区对应1个子RDD分区,这其中又分两种情况:1个子RDD分区对应1个父RDD分区(如map、filter等算子),1个子RDD分区对应N个父RDD分区(如co-paritioned(协同划分)过的Join)。
  • 宽依赖是指子RDD的分区依赖于父RDD的多个分区或所有分区,即存在一个父RDD的一个分区对应一个子RDD的多个分区。 
    1个父RDD分区对应多个子RDD分区,这其中又分两种情况:1个父RDD对应所有子RDD分区(未经协同划分的Join)或者1个父RDD对应非全部的多个RDD分区(如groupByKey)。 

本质理解:根据父RDD分区是对应1个还是多个子RDD分区来区分窄依赖(父分区对应一个子分区)和宽依赖(父分区对应多个子分 
区)。如果对应多个,则当容错重算分区时,因为父分区数据只有一部分是需要重算子分区的,其余数据重算就造成了冗余计算。

对于宽依赖,Stage计算的输入和输出在不同的节点上,对于输入节点完好,而输出节点死机的情况,通过重新计算恢复数据这种情况下,这种方法容错是有效的,否则无效,因为无法重试,需要向上追溯其祖先看是否可以重试(这就是lineage,血统的意思),窄依赖对于数据的重算开销要远小于宽依赖的数据重算开销。

窄依赖和宽依赖的概念主要用在两个地方:一个是容错中相当于Redo日志的功能;另一个是在调度中构建DAG作为不同Stage的划分点。

依赖关系的特性

第一,窄依赖可以在某个计算节点上直接通过计算父RDD的某块数据计算得到子RDD对应的某块数据;宽依赖则要等到父RDD所有数据都计算完成之后,并且父RDD的计算结果进行hash并传到对应节点上之后才能计算子RDD。 
第二,数据丢失时,对于窄依赖只需要重新计算丢失的那一块数据来恢复;对于宽依赖则要将祖先RDD中的所有数据块全部重新计算来恢复。所以在长“血统”链特别是有宽依赖的时候,需要在适当的时机设置数据检查点。也是这两个特性要求对于不同依赖关系要采取不同的任务调度机制和容错恢复机制。

容错原理

在容错机制中,如果一个节点死机了,而且运算窄依赖,则只要把丢失的父RDD分区重算即可,不依赖于其他节点。而宽依赖需要父RDD的所有分区都存在,重算就很昂贵了。可以这样理解开销的经济与否:在窄依赖中,在子RDD的分区丢失、重算父RDD分区时,父RDD相应分区的所有数据都是子RDD分区的数据,并不存在冗余计算。在宽依赖情况下,丢失一个子RDD分区重算的每个父RDD的每个分区的所有数据并不是都给丢失的子RDD分区用的,会有一部分数据相当于对应的是未丢失的子RDD分区中需要的数据,这样就会产生冗余计算开销,这也是宽依赖开销更大的原因。因此如果使用Checkpoint算子来做检查点,不仅要考虑Lineage是否足够长,也要考虑是否有宽依赖,对宽依赖加Checkpoint是最物有所值的。

Checkpoint机制

通过上述分析可以看出在以下两种情况下,RDD需要加检查点。

  1. DAG中的Lineage过长,如果重算,则开销太大(如在PageRank中)。
  2. 在宽依赖上做Checkpoint获得的收益更大。

由于RDD是只读的,所以Spark的RDD计算中一致性不是主要关心的内容,内存相对容易管理,这也是设计者很有远见的地方,这样减少了框架的复杂性,提升了性能和可扩展性,为以后上层框架的丰富奠定了强有力的基础。 
在RDD计算中,通过检查点机制进行容错,传统做检查点有两种方式:通过冗余数据和日志记录更新操作。在RDD中的doCheckPoint方法相当于通过冗余数据来缓存数据,而之前介绍的血统就是通过相当粗粒度的记录更新操作来实现容错的。

检查点(本质是通过将RDD写入Disk做检查点)是为了通过lineage做容错的辅助,lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销。

转载http://blog.csdn.net/jasonding1354/article/details/46882585

时间: 2024-10-24 23:26:41

RDD之七:Spark容错机制的相关文章

【Spark】Spark容错机制

引入 一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新. 面向大规模数据分析,数据检查点操作成本很高,需要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同时还需要消耗更多的存储资源. 因此,Spark选择记录更新的方式.但是,如果更新粒度太细太多,那么记录更新成本也不低.因此,RDD只支持粗粒度转换,即只记录单个块上执行的单个操作,然后将创建RDD的一系列变换序列(每个RDD都包含了他是如何由其他RDD变换过来的以及如何重建某一块数据的信息

RDD的容错机制

RDD的容错机制 RDD实现了基于Lineage的容错机制.RDD的转换关系,构成了compute chain,可以把这个compute chain认为是RDD之间演化的Lineage.在部分计算结果丢失时,只需要根据这个Lineage重算即可. 图1中,假如RDD2所在的计算作业先计算的话,那么计算完成后RDD1的结果就会被缓存起来.缓存起来的结果会被后续的计算使用.图中的示意是说RDD1的Partition2缓存丢失.如果现在计算RDD3所在的作业,那么它所依赖的Partition0.1.3

62、Spark Streaming:容错机制以及事务语义

一. 容错机制 1.背景 要理解Spark Streaming提供的容错机制,先回忆一下Spark RDD的基础容错语义: 1.RDD,Ressilient Distributed Dataset,是不可变的.确定的.可重新计算的.分布式的数据集.每个RDD都会记住确定好的计算操作的血缘关系, (val lines = sc.textFile(hdfs file); val words = lines.flatMap(); val pairs = words.map(); val wordCou

spark 存储机制详解

我们知道spark可以将运行过的RDD存储到内存上, 并在需要的时候重复利用. 那么spark是怎么完成这些工作的, 本文将通过分析源码来解释RDD的重复利用过程. 在上一篇文章解释了spark的执行机制, DAGScheduler负责分解action, 在DAGScheduler.getMissingParentStages中, spark首次利用了过去的RDD, 而所使用的函数就是DAGScheduler.getCacheLocs. 1 private val cacheLocs = new

ack是什么,如何使用Ack机制,如何关闭Ack机制,基本实现,STORM的消息容错机制,Ack机制

1.ack是什么 ack 机制是storm整个技术体系中非常闪亮的一个创新点. 通过Ack机制,spout发送出去的每一条消息,都可以确定是被成功处理或失败处理, 从而可以让开发者采取动作.比如在Meta中,成功被处理,即可更新偏移量,当失败时,重复发送数据. 因此,通过Ack机制,很容易做到保证所有数据均被处理,一条都不漏. 另外需要注意的,当spout触发fail动作时,不会自动重发失败的tuple,需要spout自己重新获取数据,手动重新再发送一次 ack机制即, spout发送的每一条消

Spark资源调度机制源码分析--基于spreadOutApps及非spreadOutApps两种资源调度算法

Spark资源调度机制源码分析--基于spreadOutApps及非spreadOutApps两种资源调度算法 1.spreadOutApp尽量平均分配到每个executor上: 2.非spreadOutApp尽量在使用单个executor的资源. 源码分析 org.apache.spark.deploy.master.Master 1.首先判断,master状态不是ALIVE的话,直接返回2.调度driver3. Application的调度机制(核心之核心,重中之重) 源码如下: 1 /*

架构师之路--搜索业务和技术介绍及容错机制

今天和搜索部门一起做了一下MQ的迁移,顺便交流一下业务和技术.发现现在90后小伙都挺不错.我是指能力和探究心.我家男孩,不招女婿. 在前面的文章中也提到,我们有媒资库(乐视视频音频本身内容)和全网作品库(外部视频音频内容),数据量级都在千万级.我们UV,PV,CV,VV都是保密的.所以作为一个合格的员工来说………………数值我也不知道.总之,这些数据作为最终数据源,要走一个跨多个部门的工作流才最终出现在用户点击搜索按钮出现的搜索框里.大体流程图如下: 这个流程图之所以没像以往一样手绘,嗯,那是因为

数据流容错机制

该文档翻译自Data Streaming Fault Tolerance,文档描述flink在流式数据流图上的容错机制. ------------------------------------------------------------------------------------------------- 一.介绍 flink提供了可以一致地恢复数据流应用的状态的容错机制,该机制保证即使在错误发生后,反射回数据流记录的程序的状态操作最终仅执行一次.值得注意的是,该保证可以降低为“至少执

13.容错机制

知识点: 容错机制 一.容错机制:master选举,replica容错,数据恢复 假设有9个shard(3个primary+6个replica), 3个node, 此时如果有一个master node宕机,容错机制如下: 就会有一个primary丢失,在短时间内,status 是red,ES会自动选取另一个node成为新的master node. 新产生的master shard 会将丢失的primay shard 的某一个replica shard 提升为primary shard,此时clu