Beans
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3521 Accepted Submission(s): 1681
Problem Description
Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect
the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.
Now, how much qualities can you eat and then get ?
Input
There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that
the quality of bean isn‘t beyond 1000, and 1<=M*N<=200000.
Output
For each case, you just output the MAX qualities you can eat and then get.
Sample Input
4 6 11 0 7 5 13 9 78 4 81 6 22 4 1 40 9 34 16 10 11 22 0 33 39 6
Sample Output
242
Source
2009 Multi-University Training Contest 4 -
Host by HDU
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2845
题目大意:在一个矩阵中选择一些数,要求和最大,如果选择(x,y)位置的数,则(x, y+1),(x,y-1)位置不可选,第x+1和第x-1行都不可选
题目分析:题目给了m*n的范围,就是不让你开二维开开心心切掉,不过不影响,一维照样做,先对于每一行dp一下,求出当前行能取得的最大值
tmp[j] = max(tmp[j - 1],a[i + j - 1] + tmp[j - 2])第一个表示不选第i行第j列得数字,第二个表示选,取最大,则最后tmp[m]为当前行最大的
然后因为相邻两行不能同时取,我再对行做一次dp
dp[i] = max(dp[i - 1], dp[i - 2] + row[i]),第一个表示不选第i行,第二个表示选第i行,取最大,则最后dp[cnt - 1]即为答案
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; int const MAX = 2 * 1e5 + 5; int row[MAX], a[MAX], dp[MAX], tmp[MAX]; int main() { int n, m; while(scanf("%d %d", &n, &m) != EOF) { memset(tmp, 0, sizeof(tmp)); memset(dp, 0, sizeof(dp)); for(int i = 1; i <= m * n; i++) scanf("%d", &a[i]); int cnt = 1; for(int i = 1; i <= m * n; i += m) { for(int j = 2; j <= m; j++) { tmp[1] = a[i]; tmp[j] = max(tmp[j - 1], a[i + j - 1] + tmp[j - 2]); } row[cnt ++] = tmp[m]; } dp[1] = row[1]; for(int i = 2; i < cnt; i++) dp[i] = max(dp[i - 1], dp[i - 2] + row[i]); printf("%d\n", dp[cnt - 1]); } }
版权声明:本文为博主原创文章,未经博主允许不得转载。