算法第二章上机实践报告

题目

7-2

设a[0:n-1]是已排好序的数组,请改写二分搜索算法,使得当x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。当搜索元素在数组中时,i和j相同,均为x在数组中的位置。

输入格式:

输入有两行:

第一行是n值和x值; 第二行是n个不相同的整数组成的非降序序列,每个整数之间以空格分隔。

输出格式:

输出小于x的最大元素的最大下标i和大于x的最小元素的最小下标j。当搜索元素在数组中时,i和j相同。 提示:若x小于全部数值,则输出:-1 0 若x大于全部数值,则输出:n-1的值 n的值

输入样例:

在这里给出一组输入。例如:

6 5
2 4 6 8 10 12

输出样例:

在这里给出相应的输出。例如:

1 2

算法描述这道题是在二分查找的基础上实现的,首先应判断输入的x是否大于或小于有序数组中所有的数,如果是则给出题目要求的输出,并退出程序;如果不是则进行二分查找,有两种结果:一是数组存在X,则返回X所在下标;                              二是数组中不存在X,此时right在左,left在右,两者分别是小于x的最大元素的最大下标和大于x的最小元素的最小下标。代码如下:
#include <iostream>
using namespace std;
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
    int main(int argc, char** argv)
    {
        int num;
        cin>>num;
        int aim;
        cin>>aim;
        int a[num];
        for(int i=0;i<num;i++)
        {
            cin>>a[i];
        }
        int left=0;
        int n=-1;
        int result=-1;
        int right=num-1;
        if(aim<a[0])
        {
            cout<<"-1 0";
            return 0;
        }
        if(aim>a[num-1])
        {
          cout<<num-1<<" ";
          cout<<num;
          return 0;
        }
        while(left<=right)
        {
            int mid=(left+right)/2;
            if(aim==a[mid]) {
            n= mid;
            break;
            }
           if(aim>a[mid]) left=mid+1;
            else right=mid-1;
            result=mid;
        }
        if(n!=-1)
        {
         cout<<n<<" ";
         cout<<n;
        }
        else
        {
          cout<<right<<" ";
          cout<<left;
        }
    return 0;
    }
    

算法时间及空间复杂度分析:最好时间复杂度是O(1),即输入的x大于或小于有序数组中所有的数;

若数组存在X,则平均时间复杂度为 O(logn);

最坏时间复杂度为O(logn)+1,即有序数组中不存在X;

空间复杂度为O(3)

心得体会:不要着急做题,要看清题目要求,尽量第一次就详细的分析,比如一开始我只判断了输入的数小于数组第一个数要输出什么,忽略了设置如果大于最大数的输出

原文地址:https://www.cnblogs.com/Li-Peiting/p/9782713.html

时间: 2024-10-04 02:29:56

算法第二章上机实践报告的相关文章

09.19算法第二章上机实践报告

算法第二章上机实践报告 https://edu.cnblogs.com/campus/gdwywm/se1803/homework/7608 1.实践题目 7-3 两个有序序列的中位数 https://pintia.cn/problem-sets/1173827583729741824/problems/1173827629514764290 2.问题描述 已知有两个等长的非降序序列S1, S2, 设计函数求S1与S2并集的中位数.有序序列A ?0 ?? ,A ?1 ?? ,?,A ?N−1 ?

二分查找真的那么简单吗?——算法第二章上机实践报告

一.        实践题目 改写二分搜索算法 (20 分) 题目来源:<计算机算法设计与分析>,王晓东 设a[0:n-1]是已排好序的数组,请改写二分搜索算法,使得当x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j.当搜索元素在数组中时,i和j相同,均为x在数组中的位置. 输入格式: 输入有两行: 第一行是n值和x值: 第二行是n个不相同的整数组成的非降序序列,每个整数之间以空格分隔. 输出格式: 输出小于x的最大元素的最大下标i和大于x的最小元素的最小下标j.当搜索元素在

第二章上机实践报告

实践报告任选一题进行分析.内容包括: 实践题目: 7-1 二分查找 (20 分) 输入n值(1<=n<=1000).n个非降序排列的整数以及要查找的数x,使用二分查找算法查找x,输出x所在的下标(0~n-1)及比较次数.若x不存在,输出-1和比较次数. 输入格式: 输入共三行: 第一行是n值: 第二行是n个整数: 第三行是x值. 输出格式: 输出x所在的下标(0~n-1)及比较次数.若x不存在,输出-1和比较次数. 问题描述:问题是让我们设计一个二分查找,在已经输入的数组里找到我们输入的数字,

『嗨威说』算法设计与分析 - 算法第二章上机实践报告(二分查找 / 改写二分搜索算法 / 两个有序序列的中位数)

本文索引目录: 一.PTA实验报告题1 : 二分查找 1.1 实践题目 1.2 问题描述 1.3 算法描述 1.4 算法时间及空间复杂度分析 二.PTA实验报告题2 : 改写二分搜索算法 2.1 实践题目 2.2 问题描述 2.3 算法描述 2.4 算法时间及空间复杂度分析 三.PTA实验报告题3 : 两个有序序列的中位数 3.1 实践题目 3.2 问题描述 3.3 算法描述 3.4 算法时间及空间复杂度分析 四.实验心得体会(实践收获及疑惑) 一.PTA实验报告题1 : 二分查找 1.1 实践

《算法设计与分析》--算法第二章上机实践报告

开门见山,直接上题目. 7-2 改写二分搜索算法 (20 分) 设a[0:n-1]是已排好序的数组,请改写二分搜索算法,使得当x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j.当搜索元素在数组中时,i和j相同,均为x在数组中的位置. 输入格式: 输入有两行: 第一行是n值和x值: 第二行是n个不相同的整数组成的非降序序列,每个整数之间以空格分隔. 输出格式: 输出小于x的最大元素的最大下标i和大于x的最小元素的最小下标j.当搜索元素在数组中时,i和j相同. 提示:若x小于全部数

【实践】算法第二章上机实践报告

1. 实践题目 7-3 两个有序序列的中位数 2. 问题描述 已知有两个等长的非降序序列S1, S2, 设计函数求S1与S2并集的中位数.有序序列A?0??,A?1??,?,A?N?1??的中位数指A?(N?1)/2??的值,即第?(N+1)/2?个数(A?0??为第1个数). Input 在一行中输出两个输入序列的并集序列的中位数. Sample 输入1: 5 1 3 5 7 9 2 3 4 5 6 输出1: 4 输入2: 6 -100 -10 1 1 1 1 -50 0 2 3 4 5 输出

揭露动态规划真面目——算法第三章上机实践报告

算法第三章上机实践报告 一.        实践题目 7-2 最大子段和 (40 分) 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值.当所给的整数均为负数时,定义子段和为0. 要求算法的时间复杂度为O(n). 输入格式: 输入有两行: 第一行是n值(1<=n<=10000): 第二行是n个整数. 输出格式: 输出最大子段和. 输入样例: 在这里给出一组输入.例如: 6 -2 11 -4 13 -5

贪心算法?我全都要!——算法第四章上机实践报告

算法第四章上机实践报告 一.        实践题目 4-1 程序存储问题 (90 分) 设有n 个程序{1,2,…, n }要存放在长度为L的磁带上.程序i存放在磁带上的长度是 li,1≤i≤n. 程序存储问题要求确定这n 个程序在磁带上的一个存储方案, 使得能够在磁带上存储尽可能多的程序. 对于给定的n个程序存放在磁带上的长度,计算磁带上最多可以存储的程序数. 输入格式: 第一行是2 个正整数,分别表示文件个数n和磁带的长度L.接下来的1行中,有n个正整数,表示程序存放在磁带上的长度. 输出

『嗨威说』算法设计与分析 - PTA 数字三角形 / 最大子段和 / 编辑距离问题(第三章上机实践报告)

本文索引目录: 一.PTA实验报告题1 : 数字三角形 1.1 实践题目 1.2 问题描述 1.3 算法描述 1.4 算法时间及空间复杂度分析 二.PTA实验报告题2 : 最大子段和 2.1 实践题目 2.2 问题描述 2.3 算法描述 2.4 算法时间及空间复杂度分析 三.PTA实验报告题3 : 编辑距离问题 3.1 实践题目 3.2 问题描述 3.3 算法描述 3.4 算法时间及空间复杂度分析 四.实验心得体会(实践收获及疑惑) 一.PTA实验报告题1 : 数字三角形 1.1 实践题目: 1