算法第三章实践

1. 问题:

  

  所以问题的核心是:如何找到最优路径,得到最大的和?

2. 思路:我一开始的思路是,从顶点开始,比较左右两点的大小,然后取最大值的完事了。

    然后结果是28。

    为什么呢?原来判断到8的时候,会往右走,但是最大值的路径在最左边的,只要往右走了就无法得到最大值。

3. 算法:最后看了网上的博客,看着c++用python打了一遍,(不过是从山脚下开始的,跟oj的热身赛一样)。

for i in range(num-1, 0, -1):
    i -= 1
    for n in range(i):
        if b[i+1][n+1] > b[i+1][n]:
            b[i][n] = a[i][n] + b[i+1][n+1]
        else:
            b[i][n] = a[i][n] + b[i+1][n]
        answer.append(b[i][n])

其实基本思路就是建立两个数组a[][]和b[][],然后从a的最后一行往上叠加,每一次都增加两个数中的最大值,然后再加上山顶的数字就ok了。

4. 算法复杂度:核心算法里有两个for所以时间复杂度为o(n^2),空间复杂度的计算百度了下,因为建立了二维的表格,所以空间复杂度为n^2.

5. 心得:有些问题自己想也是不太理解吧,有一个伙伴讲解了会更快更好的理解。

原文地址:https://www.cnblogs.com/RS-Sakura/p/9944334.html

时间: 2024-11-04 04:46:52

算法第三章实践的相关文章

【实践报告】算法第三章实践报告

1.实践题目 7-2最大子段和 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],-,a[n],求该序列如a[i]+a[i+1]+-+a[j]的子段和的最大值.当所给的整数均为负数时,定义子段和为0. 要求算法的时间复杂度为O(n). 2.问题描述 输入格式: 输入有两行: 第一行是n值(1<=n<=10000): 第二行是n个整数. 输出格式: 输出最大子段和. 输入样例: 在这里给出一组输入.例如: 6 -2 11 -4 13 -5 -2 输出样例: 在这里给出相应的输出.

算法第三章实践报告

1.最大子段和. 2.给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],-,a[n],求该序列如a[i]+a[i+1]+-+a[j]的子段和的最大值.当所给的整数均为负数时,定义子段和为0. 要求算法的时间复杂度为O(n). 3. #include<iostream>using namespace std; int maxi(int a[],int n){ int sum,maxsum; int i; sum=maxsum=0; for(i =0;i<n;i++) { s

揭露动态规划真面目——算法第三章上机实践报告

算法第三章上机实践报告 一.        实践题目 7-2 最大子段和 (40 分) 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值.当所给的整数均为负数时,定义子段和为0. 要求算法的时间复杂度为O(n). 输入格式: 输入有两行: 第一行是n值(1<=n<=10000): 第二行是n个整数. 输出格式: 输出最大子段和. 输入样例: 在这里给出一组输入.例如: 6 -2 11 -4 13 -5

算法第三章上机实验

算法第三章上机实验 数字三角形 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. #include <iostream> using namespace std; int maxsum(int a[100][100],int n){ int b[100][100]={0}; for(int i=n-1;i>=0;i--){ for(int j=i;j>=0;j--){

算法第三章上机实践报告——动态规划

1.实践题目 7-1 数字三角形 (30 分) 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. 输入格式: 输入有n+1行: 第 1 行是数字三角形的行数 n,1<=n<=100. 接下来 n行是数字三角形各行中的数字.所有数字在0..99 之间. 输出格式: 输出最大路径的值. 输入样例: 在这里给出一组输入.例如: 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6

算法第三章上机实践

1.实践题目 最大子段和 2.问题描述 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],-,a[n],求该序列如a[i]+a[i+1]+-+a[j]的子段和的最大值.当所给的整数均为负数时,定义子段和为0. 要求算法的时间复杂度为O(n). 输入格式: 输入有两行: 第一行是n值(1<=n<=10000): 第二行是n个整数. 输出格式: 输出最大子段和. 3.算法描述 int maxsum(int a[],int n) { int sum=0,k=0; for(int i=

算法第三章上机实践报告

实践题目 7-1 数字三角形 (30 分) 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. 输入格式: 输入有n+1行: 第 1 行是数字三角形的行数 n,1<=n<=100. 接下来 n行是数字三角形各行中的数字.所有数字在0..99 之间. 输出格式: 输出最大路径的值. 输入样例: 在这里给出一组输入.例如: 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5

算法第三章上机实践报告之数字三角形

1.实践题目 7-1 数字三角形 (30 分) 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. 输入格式: 输入有n+1行: 第 1 行是数字三角形的行数 n,1<=n<=100. 接下来 n行是数字三角形各行中的数字.所有数字在0..99 之间. 输出格式: 输出最大路径的值. 输入样例: 在这里给出一组输入.例如: 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6

算法第五章实践

一 . 实践题目 工作分配问题 二 . 问题描述 设有n件工作分配给n个人.将工作i分配给第j个人所需的费用为cij . 设计一个算法,对于给定的工作费用,为每一个人都分配1 件不同的工作,并使总费用达到最小. 输入格式: 输入数据的第一行有1 个正整数n (1≤n≤20).接下来的n行,每行n个数,表示工作费用. 输出格式: 将计算出的最小总费用输出到屏幕. 输入样例: 3 10 2 3 2 3 4 3 4 5 输出样例: 9 三 .算法描述 进行回溯,遍历左子树后回溯遍历右子树 if(cp+