UVa122:Trees on the level

Trees on the level

Background

Trees are fundamental in many branches of computer science. Current state-of-the art parallel computers such as Thinking Machines‘ CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in computer graphics.

This problem involves building and traversing binary trees.

The Problem

Given a sequence of binary trees, you are to write a program that prints a level-order traversal of each tree. In this problem each node of a binary tree contains a positive integer and all binary trees have fewer than 256 nodes.

In a level-order traversal of a tree, the data in all nodes at a given level are printed in left-to-right order and all nodes at level k are printed before all nodes at level k+1.

For example, a level order traversal of the tree

is : 5, 4, 8, 11, 13, 4, 7, 2, 1.

In this problem a binary tree is specified by a sequence of pairs (n,s) where n is the value at the node whose path from the root is given by the string s. A path is given be a sequence of L‘s and R‘s where L indicates a left branch and R indicates a right branch. In the tree diagrammed above, the node containing 13 is specified by (13,RL), and the node containing 2 is specified by (2,LLR). The root node is specified by (5,) where the empty string indicates the path from the root to itself. A binary tree is considered to be completely specified if every node on all root-to-node paths in the tree is given a value exactly once.

The Input

The input is a sequence of binary trees specified as described above. Each tree in a sequence consists of several pairs (n,s) as described above separated by whitespace. The last entry in each tree is (). No whitespace appears between left and roght parentheses.

All nodes contain a positive integer. Every tree in the input will consist of at least one node and no more than 256 nodes. Input is treminated by end-of-file.

The Output

For each completely specified binary tree in the input file, the level order traversal of that tree should be printed. If a tree is not completely specified, i.e., some node in the tree is NOT given a value or a node is given a value more than once, then the string "not complete" should be printed.

Sample Input

(11,LL) (7,LLL) (8,R) (5,) (4,L) (13,RL) (2,LLR) (1,RRR) (4,RR) ()
(3,L) (4,R) ()

Sample Output

5 4 8 11 13 4 7 2 1
not complete

-----------------------------------------------------------------------------------------------------

思路解析:
1.数据结构的选取
  本题的数据元素为若干个结点,选取数组在本题中是行不通的,因为考虑到极限情况,256个结点形成一条链,那样的开销浪费将会是巨大的,数组也开不下。看来,需要采用动态结构,根据需要建立新的结点,然后将其组织成一棵完整的树。
2.功能模块划分(每个模块用一个函数来实现,函数名需要起的有意义)
  本题要求实现以下几个功能:①数据输入②建树③层次遍历树并输出对应结点值
-----------------------------------------------------------------------------------------------------

代码1:(有BUG,你能知道错在哪吗?)

  1 #include <cstdio>
  2 #include <cstring>
  3 #include <vector>
  4 #include <queue>
  5 using namespace std;
  6 const int maxn = 300;
  7 //结点类型
  8 struct Node
  9 {
 10     bool have_value;    //是否被赋过值
 11     int v;    //结点值
 12     Node *left, *right;
 13     Node():have_value(false),left(NULL),right(NULL){}    //构造函数
 14 };
 15
 16 Node* root = NULL;        //二叉树的根结点
 17 char s[maxn];        //保存读入结点
 18 bool failed;
 19 Node* newnode()
 20 {
 21     return new Node();
 22 }
 23
 24 void addnode(int v, char* s)
 25 {
 26     //    printf("%s \n", s);
 27     int n = strlen(s);
 28     //    printf("%d \n", strlen(s));
 29     Node* u = root;            //从根结点开始往下走
 30     for (int i = 0; i < n; i++)
 31     {
 32         if (s[i] == ‘L‘)
 33         {
 34             if (u->left == NULL)
 35             {
 36                 u->left = newnode();    //结点不存在,建立新结点
 37                                 u = u->left;            //往左走
 38             }
 39
 40         }
 41         else if (s[i] == ‘R‘)
 42         {
 43             if (u->right == NULL)
 44             {
 45                 u->right = newnode();
 46                                 u = u->right;
 47             }
 48
 49         }
 50
 51
 52     }
 53     #if 1
 54         if (u->have_value)        //已经赋过值,表明输入有误
 55         {
 56                         failed = true;
 57         }
 58 #endif
 59     u->v = v;
 60     u->have_value = true;    //别忘记做标记
 61 }
 62
 63 void remove_tree(Node* u)
 64 {
 65     if (u == NULL)
 66     {
 67         return;        //提前判断比较稳妥
 68     }
 69     remove_tree(u->left);    //递归释放左子树
 70     remove_tree(u->right);    //递归释放右子树
 71     delete u;                //调用u的析构函数并释放u结点本身的内存
 72 }
 73
 74 bool read_input()
 75 {
 76     //    int count = 1;
 77     failed = false;
 78     remove_tree(root);    //释放上一次构建的二叉树
 79     root = newnode();    //创建根结点
 80     for (;;)
 81     {
 82         if (scanf("%s", s) != 1)
 83         {
 84             return false;    //整个输入结束
 85         }
 86         if (!strcmp(s, "()"))    //读到结束标志,退出循环
 87         {
 88             break;
 89         }
 90         //    printf("%s \n", s);
 91         int v;
 92         sscanf(&s[1], "%d", &v);    //读入结点值
 93         //        printf("%d : v = %d\n", count++, v);
 94         addnode(v, strchr(s, ‘,‘)+1);
 95         //printf("%s \n", strchr(s, ‘,‘)+1);
 96     }
 97     //    printf("root value = %d \n", root->v);
 98     return true;
 99 }
100
101 bool bfs(vector<int>& ans)
102 {
103     queue<Node*> q;
104     ans.clear();
105     q.push(root);    //初始时只有一个根结点
106     while (!q.empty())
107     {
108         Node* u = q.front();
109         q.pop();
110         if (!u->have_value)
111         {
112             return false;    //有结点没有被赋过值,表明输入有误
113         }
114         ans.push_back(u->v);//增加到输出序列尾部
115         //printf("%d \n", u->v);
116         if (u->left != NULL)
117         {
118             q.push(u->left);    //把左结点(如果有)放入队列
119         }
120         if (u->right != NULL)
121         {
122             q.push(u->right);    //把右结点(如果有)放入队列
123         }
124     }
125     return true;                //输入正确
126 }
127 /*
128 int main()
129 {
130     while (1)
131     {
132         if (read_input())
133         {
134             vector<int> ans;
135             bfs(ans);
136             for (int i = 0; i < ans.size(); i++)
137             {
138                 printf("%d ", ans[i]);
139             }
140             printf("\n");
141         }
142         else
143         {
144             printf("%d\n", -1);
145         }
146 #if 0
147         printf("ans.size() == %d\n", ans.size());
148 #endif
149
150
151         return 0;
152     }
153     */
154 int main()
155 {
156     vector<int> ans;
157     while (read_input())
158     {
159         if (!bfs(ans))
160         {
161             failed = true;
162         }
163         if (failed)
164         {
165             printf("not complete\n");
166         }
167         else
168         {
169             for (int i = 0; i < ans.size(); i++)
170             {
171                 if (i != 0)
172                 {
173                     printf(" ");
174                 }
175                 printf("%d", ans[i]);
176             }
177             printf("\n");
178         }
179     }
180
181     return 0;
182 }     

  代码2:(正确代码)
    链接:https://github.com/ToWorld/OJ/blob/master/UVa122

时间: 2024-10-26 23:36:08

UVa122:Trees on the level的相关文章

UVA122 Trees on the level【二叉树】【BFS】

Trees on the level Background Trees are fundamental in many branches of computer science. Current state-of-the art parallel computers such as Thinking Machines' CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in

E - Trees on the level

 Trees on the level  Background Trees are fundamental in many branches of computer science. Current state-of-the art parallel computers such as Thinking Machines' CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms i

UVa 122 Trees on the level(建树,层次遍历)

题意  建树并层次遍历输出  (data,pos)  pos表示改节点位置  L代表左儿子  R代表右儿子 建树很简单  开始在根节点  遇到L往左走遇到R往右走 节点不存在就新建   走完了就保存改节点的值  输出直接bfs就行了了 #include<cstdio> #include<cctype> #include<cstring> using namespace std; const int maxn = 300; char s[maxn][maxn]; int

122 - Trees on the level(动态分配空间解法)

Trees on the level Background Trees are fundamental in many branches of computer science. Current state-of-the art parallel computers such as Thinking Machines' CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in

UVA 122 -- Trees on the level (二叉树 BFS)

 Trees on the level UVA - 122  解题思路: 首先要解决读数据问题,根据题意,当输入为"()"时,结束该组数据读入,当没有字符串时,整个输入结束.因此可以专门编写一个readin()函数,类型设置为bool型,遇到第一种情况时返回true,遇到第二种情况返回false,主程序中只要发现readin返回false时就break,结束整个大循环. 接下来要建立二叉树,首先为二叉树编写一个结构体,然后根据字符串的输入情况来建树,如果是'L'就往左走,走不动时建一颗

例题6-7 Trees on the level ,Uva122

本题考查点有以下几个: 对数据输入的熟练掌握 二叉树的建立 二叉树的宽度优先遍历 首先,特别提一下第一点,整个题目有相当一部分耗时在了第一个考查点上(虽然有些不必要,因为本应该有更简单的方法).这道题的输入有以下几种方案: 一次性输入并直接得到要得到的数据 输入后进行加工处理 对于第一种方案,我采用的是与正则相结合的方案 scanf("(%d%[,A-Z]) ",&d,s)) 得到这样的写法可谓是费了一番功夫.难点有几个,最突出的是考虑数据不存在的情况:如()(1,) 我的解决

uva 122 trees on the level——yhx

题目如下:Given a sequence of binary trees, you are to write a program that prints a level-order traversal of each tree. In this problem each node of a binary tree contains a positive integer and all binary trees have have fewer than 256 nodes. In a level

Trees on the level

Background Trees are fundamental in many branches of computer science. Current state-of-the art parallel computers such as Thinking Machines' CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in computer graphics.

UVA 122 Trees on the level 二叉树 广搜

题目链接: https://vjudge.net/problem/UVA-122 题目描述: 给你一种二叉树的构造方法, 让你逐层输出二叉树的节点值, 如果不能够则输出"not complete" 解题思路: 这道题就是硬搞就可以了, 参考紫书去做的, 首先处理输入就是非常麻烦的事情, 用到了sscanf就会轻松很多, 看来C中还是有很多很多的好用的标准库函数可以拿来用的, 例如还有本题中的strchr() , 处理完输入, 然后就去构造数. 然后广搜一遍即可 代码: #include