Ultra-QuickSort
Description In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence Input The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed. Output For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence. Sample Input 5 9 1 0 5 4 3 1 2 3 0 Sample Output 6 0 Source |
这道题就是通过求逆序数的和,来求出序列所有的交换次数。用冒泡排序直接会TLE(相当于暴力了),
这道题有3种解法,树状数组、线段树、归并排序(O(N*lgN))
其中归并排序的写法应该是最简单的,树状数组、线段树要用到离散化,博客后续还会跟上
归并写法,其实归并写法,自己并不是很熟练,推介大牛博客
http://blog.163.com/zhaohai_1988/blog/static/20951008520127321239701/
大牛代码真心漂亮!!中间核心,就是学大牛写的
1 #include <cstdio> 2 #include <iostream> 3 #include <cstring> 4 #define LL long long //LL 代替 long long 的写法 中间数据会超出 int 5 using namespace std; 6 7 const int max_size = 500010; 8 9 int arry[max_size], tmp_arry[max_size]; 10 11 LL Merge(int *arr, LL beg, LL mid, LL end, int *tmp_arr) 12 { 13 memcpy(tmp_arr+beg, arr+beg, sizeof(int)*(end-beg+1)); 14 LL i = beg; 15 LL j = mid + 1; 16 LL k = beg; 17 LL inversion = 0; 18 while(i <= mid && j <= end) 19 { 20 if(tmp_arr[i] <= tmp_arr[j]) ///如果合并逆序数的时候,前边小于等于后边,就不用记录逆序数的值 21 { 22 arr[k++] = tmp_arr[i++]; 23 }else{ 24 arr[k++] = tmp_arr[j++]; ///如果不是,则要记录逆序数的值 25 inversion += (mid - i + 1);///简单画下就能看出 26 } 27 } 28 29 while(i <= mid) ///把没有并入arr数组的数并入 30 31 { 32 arr[k++] = tmp_arr[i++]; 33 } 34 while(j <= end) 35 { 36 arr[k++] = tmp_arr[j++]; 37 } 38 return inversion; 39 } 40 41 LL MergeInversion(int *arr, LL beg, LL end, int *tmp_arr) 42 { 43 LL inversions = 0; 44 if(beg < end) 45 { 46 LL mid = (beg + end) >> 1; 47 inversions += MergeInversion(arr, beg, mid, tmp_arr); ///分成两段分别进行记录,递归的进行下去,找逆序数和 48 inversions += MergeInversion(arr, mid+1, end, tmp_arr); 49 inversions += Merge(arr, beg, mid, end, tmp_arr); 50 } 51 return inversions; 52 } 53 54 int main() 55 { 56 LL n; 57 58 while(cin >> n) 59 { 60 if(n == 0) 61 break; 62 for(int i = 0; i < n; ++i) 63 scanf("%d", &arry[i]); 64 memcpy(tmp_arry, arry, sizeof(int)*n); 65 cout << MergeInversion(arry, 0, n-1, tmp_arry) << endl; 66 } 67 return 0; 68 }