作业内容:
Use the following method printPrimes() for questions a–f below.
代码如下:
1. /** ***************************************************** 2. * Finds and prints n prime integers 3. * Jeff Offutt, Spring 2003 4. ********************************************************* */ 5. private static void printPrimes (int n) 6. { introtest CUUS047-Ammann ISBN 9780521880381 November 8, 2007 17:13 Char Count= 0 64 Coverage Criteria 7. int curPrime; // Value currently considered for primeness 8. int numPrimes; // Number of primes found so far. 9. boolean isPrime; // Is curPrime prime? 10. int [] primes = new int [MAXPRIMES]; // The list of prime numbers. 11.12. // Initialize 2 into the list of primes. 13. primes [0] = 2; 14. numPrimes = 1; 15. curPrime = 2; 16. while (numPrimes < n) 17. { 18. curPrime++; // next number to consider ... 19. isPrime = true; 20. for (int i = 0; i <= numPrimes-1; i++) 21. { // for each previous prime. 22. if (isDivisible (primes[i], curPrime)) 23. { // Found a divisor, curPrime is not prime. 24. isPrime = false; 25. break; // out of loop through primes. 26. }27. } 28. if (isPrime) 29. { // save it! 30. primes[numPrimes] = curPrime; 31. numPrimes++; 32. } 33. } // End while 34. 35. // Print all the primes out. 36. for (int i = 0; i <= numPrimes-1; i++) 37. { 38. System.out.println ("Prime: " + primes[i]); 39. } 40. } // end printPrimes
要求:
(a) Draw the control ?ow graph for the printPrimes() method.
(b) Considertestcasest1=(n=3)andt2=(n=5).Althoughthesetourthe same prime paths in printPrimes(), they do not necessarily ?nd the same faults.Designasimplefaultthat t2would bemorelikelytodiscover than t1 would.
(c) For printPrimes(), ?nd a test case such that the corresponding test path visits the edge that connects the beginning of the while statement to the for statement without going through the body of the while loop.
(d) Enumerate the test requirements for node coverage, edge coverage, and prime path coverage for the graph for printPrimes().
个人答案:
a):
b.将MAXPRIMES设置为4时,t2会发生数组越界错误,但t1不会发生错误。
c.令numPrimes=1.
d.点覆盖:{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
边覆盖:{(1,2),(2,3),(3,4),(4,5),(5,6),(6,8),(8,5),(6,7),(7,9),(5,9),(9,10),(9,11),(10,11),(11,2),(2,12),(12,13),(13,14),(14,15),(15,13),(13,16)}
主路径覆盖:{(1,2,3,4,5,6,8),(1,2,3,4,5,6,7,9,10,11),(1,2,3,4,5,6,7,9,11),(1,2,3,4,5,9,11),(1,2,3,4,5,9,10,11),(5,6,8,5),(6,8,5,6),(8,5,6,8),(8,5,6,7,9,11),(8,5,6,7,9,10,11),(1,2,12,13,16),(1,2,12,13,14,15),(13,14,15,13),(14,15,13,14),(15,13,14,15),(14,15,13,16),(15,13,16)}
第二部分:用junit和eclemma测试
eclemma测试结果:
Junit测试: