Linux进程地址空间与虚拟内存

http://blog.csdn.net/xu3737284/article/details/12710217

32位机器上linux操作系统中的进程的地址空间大小是4G,其中0-3G是用户空间,3G-4G是内核空间。进程的地址空间存在于虚拟内存中。虚拟内存不能被禁用。

进程地址空间

进程地址空间分为内核空间和用户空间  

因为每个进程可以通过系统调用进入内核,因此,Linux内核由系统内的所有进程共享。于是,从具体进程的角度来看,每个进程可以拥有4G字节的虚拟空间。

A.正文段。这是由cpu执行的机器指令部分。通常,正文段是可共享的,所以即使是经常执行的程序(如文本编辑程序、C编译程序、shell等)在存储器中也只需要有一个副本,另外,正文段常常是只读的,以防止程序由于意外事故而修改器自身的指令。

  B.初始化数据段。通常将此段称为数据段,它包含了程序中需赋初值的变量。例如,C程序中任何函数之外的说明:

  int maxcount = 99;(全局变量)

  C.非初始化数据段。通常将此段称为bss段,这一名称来源于早期汇编程序的一个操作,意思是"block started by symbol",在程序开始执行之前,内核将此段初始化为0。函数外的说明:

  long sum[1000];

  使此变量存放在非初始化数据段中。

  D.栈。自动变量以及每次函数调用时所需保存的信息都存放在此段中。每次函数调用时,其返回地址、以及调用者的环境信息(例如某些机器寄存器)都存放在栈中。然后,新被调用的函数在栈上为其自动和临时变量分配存储空间。通过以这种方式使用栈,C函数可以递归调用。

  E.堆。通常在堆中进行动态存储分配。由于历史上形成的惯例,堆位于非初始化数据段顶和栈底之间。

  从上图我们看到栈空间是下增长的,堆空间是从下增长的,他们会会碰头呀?一般不会,因为他们之间间隔很大

内核态和用户态

当一个任务(进程)执行系统调用而陷入内核代码中执行时,我们就称进程处于内核运行态(或简称为内核态)。此时处理器处于特权级最高的(0级)内核代码中执行。当进程处于内核态时,执行的内核代码会使当前进程的内核栈。每个进程都有自己的内核栈。当进程在执行用户自己的代码时,则称其处于用户运行态(用户态)。即此时处理器在特权级最低的(3级)用户代码中运行。当正在执行用户程序而突然被中断程序中断时,此时用户程序也可以象征性地称为处于进程的内核态。因为中断处理程序将使用当前进程的内核栈。这与处于内核态的进程的状态有些类似。

内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间。

  在linux操作系统中,每个进程都通过一个task_struct的结构体描叙,每个进程的地址空间都通过一个mm_struct描叙,c语言中的每个段空间都通过vm_area_struct表示,他们关系如下 :

  当运行一个程序时,操作系统需要创建一个进程,这个进程和程序之间都干了些什么呢?

  当一个程序被执行时,该程序的内容必须被放到进程的虚拟地址空间,对于可执行程序的共享库也是如此。可执行程序并非真正读到物理内存中,而只是链接到进程的虚拟内存中。

  当一个可执行程序映射到进程虚拟地址空间时,一组vm_area_struct数据结构将被产生。每个vm_area_struct数据结构表示可执行印象的一部分;是可执行代码,或是初始化的数据,以及未初始化的数据等。

  linux操作系统是通过sys_exec对可执行文件进行映射以及读取的,有如下几步:

  1.创建一组vm_area_struct

  2.圈定一个虚拟用户空间,将其起始结束地址(elf段中已设置好)保存到vm_start和vm_end中。

  3.将磁盘file句柄保存在vm_file中

  4.将对应段在磁盘file中的偏移值(elf段中已设置好)保存在vm_pgoff中;

  5.将操作该磁盘file的磁盘操作函数保存在vm_ops中

  注意:这里没有对应 的页目录表项创建页表,更不存在设置页表项了。

  假设现在程序中有一条指令需要读取上面vm_start--vm_end之间的某内容

  例如:mov [0x08000011],%eax,那么将会执行如下序列:

  1.cpu依据CR3(current->pgd)找到0x08000011地址对应的pgd[i],由于该pgd[i]内容保持为初始化状态即为0,导致cpu异常.

  2.do_page_fault被调用,在该函数中,为pgd[i]在内存中分配一个页表,并让该表项指向它,如下图所示:

  注意:这里i为0x08000011高10位,j为其中间10位,此时pt表项全部为0(pte[j]也为0);

  3.为pte[j]分配一个真正的物理内存页面,依据vm_area_struct中的vm_file、vm_pgoff和vm_ops,调用filemap_nopage将磁盘file中vm_pgoff偏移处的内容读入到该物理页面中,如下图所示:

  ①。分配物理内存页面;

  ②。从磁盘文件中将内容读取到物理内存页面中

  从上面我们可以知道,在进程创建的过程中,程序内容被映射到进程的虚拟内存空间,为了让一个很大的程序在有限的物理内存空间运行,我们可以把这个程序的开始部分先加载到物理内存空间运行,因为操作系统处理的是进程的虚拟地址,如果在进行虚拟到物理地址的转换工程中,发现物理地址不存在时,这个时候就会发生缺页异常(nopage),接着操作系统就会把磁盘上还没有加载到内存中的数据加载到物理内存中,对应的进程页表进行更新。也许你会问,如果此时物理内存满了,操作系统将如何处理?

  下面我们看看linux操作系统是如何处理的:

  如果一个进程想将一个虚拟页装入物理内存,而又没有可使用的空闲物理页,操作系统就必须淘汰物理内存中的其他页来为此页腾出空间。

  在linux操作系统中,物理页的描叙如下:

  struct mem_map

  {

  1.本页使用计数,当该页被许多进程共享时计数将大于1.

  2.age描叙本页的年龄,用来判断该页是否为淘汰或交换的好候选

  3.map_nr描叙物理页的页帧号

  }

  如果从物理内存中被淘汰的页来自于一个映像或数据文件,并且还没有被写过,则该页不必保存,它可以丢掉。如果有进程在需要该页时就可以把它从映像或数据文件中取回内存。

  然而,如果该页被修改过,操作系统必须保留该页的内容以便晚些时候在被访问。这种页称为"脏(dirty)页",当它被从内存中删除时,将被保存在一个称为交换文件的特殊文件中。

  相对于处理器和物理内存的速度,访问交换文件要很长时间,操作系统必须在将页写到磁盘以及再次使用时取回内存的问题上花费心机。

  如果用来决定哪一页被淘汰或交换的算法不够高效的话,就可能出现称为"抖动"的情况。在这种情况下,页面总是被写到磁盘又读回来,操作系统忙于此而不能进行真正的工作。

  linux使用"最近最少使用(Least Recently Used ,LRU)"页面调度技巧来公平地选择哪个页可以从系统中删除。这种设计系统中每个页都有一个"年龄",年龄随页面被访问而改变。页面被访问越多它越年轻;被访问越少越老。年老的页是用于交换的最佳候选页。

时间: 2024-10-01 05:21:30

Linux进程地址空间与虚拟内存的相关文章

Linux进程地址空间和虚拟内存

一.虚拟内存 先来看一张图(来自<Linux内核完全剖析>),如下: 分段机制:即分成代码段,数据段,堆栈段.每个内存段都与一个特权级相关联,即0~3,0具有最高特权级(内核),3则是最低特权级(用户),每当程序试图访问(权限又分为可读.可写和可执行)一个段时,当前特权级CPL就会与段的特权级进行比较,以确定是否有权限访问.每个特权级都有自己的程序栈,当程序从一个特权级切换到另一个特权级上执行时,堆栈段也随之改换到新级别的堆栈中. 段选择符:每个段都有一个段选择符.段描述符指明段的大小.访问权

Linux进程地址空间的理解

对于Linux的虚拟内存的理解,这个例子算是一个很好的引导了,原文链接:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=26683523&id=3201345 <Linux内核设计与实现>15章节给出的例子更详细些. ************************************************************************** 先介绍Linux进程地址空间的数据结构更方便理解,

linux进程地址空间详解(转载)

linux进程地址空间详解(转载) 在前面的<对一个程序在内存中的分析 >中很好的描述了程序在内存中的布局,这里对这个结果做些总结和实验验证.下面以Linux为例(实验结果显示windows上的结果也一样). 我们还是利用前面看到过的这个图,如下图:32位X86机器的内存布局图,内存主要分为栈.堆.BSS段.数据段.代码段5个段.   代码段:代码段(code segment/text segment)通常是指用来存放程序执行代码的一块内存区域.这部分区域的大小在程序运行前就已经确定,并且内存

linux进程地址空间--vma的基本操作【转】

转自:http://blog.csdn.net/vanbreaker/article/details/7855007 版权声明:本文为博主原创文章,未经博主允许不得转载. 在32位的系统上,线性地址空间可达到4GB,这4GB一般按照3:1的比例进行分配,也就是说用户进程享有前3GB线性地址空间,而内核独享最后1GB线性地址空间.由于虚拟内存的引入,每个进程都可拥有3GB的虚拟内存,并且用户进程之间的地址空间是互不可见.互不影响的,也就是说即使两个进程对同一个地址进行操作,也不会产生问题.在前面介

linux 进程地址空间的一步步探究

我们知道,在32位机器上linux操作系统中的进程的地址空间大小是4G,其中0-3G是用户空间,3G-4G是内核空间.其实,这个4G的地址空间是不存在的,也就是我们所说的虚拟内存空间. 那虚拟内存空间是什么呢,它与实际物理内存空间又是怎样对应的呢,为什么有了虚拟内存技术,我们就能运行比实际物理内存大的应用程序,它是怎么做到的呢?呵呵,这一切的一切都是个迷呀,下面我们就一步一步解开心中的谜团吧! 进程使用虚拟内存中的地址,由操作系统协助相关硬件,把它“转换”成真正的物理地址.虚拟地址通过页表(Pa

Linux进程地址空间的一步步探究

我们知道,在32位机器上linux操作系统中的进程的地址空间大小是4G,其中0-3G是用户空间,3G-4G是内核空间.其实,这个4G的地址空间是不存在的,也就是我们所说的虚拟内存空间. 那虚拟内存空间是什么呢,它与实际物理内存空间又是怎样对应的呢,为什么有了虚拟内存技术,我们就能运行比实际物理内存大的应用程序,它是怎么做到的呢? 呵呵,这一切的一切都是个迷呀,下面我们就一步一步解开心中的谜团吧! 我们来看看,当我们写好一个应用程序,编译后它都有什么东东? 例如: 用命令size a.out会得到

[Linux]进程(十)——进程地址空间

1,进程的虚拟内存: 背景知识a.out分段以及运行时候内存的结构点击打开链接 linux进程地址空间 linux进程地址空间 \ [cpp] view plaincopy struct mm_struct { struct vm_area_struct  *mmap;               /* list of memory areas */ struct rb_root         mm_rb;               /* red-black tree of VMAs */

linux进程的地址空间,核心栈,用户栈,内核线程

linux进程的地址空间,核心栈,用户栈,内核线程 地址空间: 32位linux系统上,进程的地址空间为4G,包括1G的内核地址空间,和3G的用户地址空间. 内核栈: 进程控制块task_struct中保存了2个page大小的信息. 为什么每一个进程都是用各自的内核栈呢? 引用(http://hi.baidu.com/iruler/blog/item/0c3363f377ccc5c90a46e023.html)“ 假设某个进程通过系统调用运行在内核态(使用这个全局内核堆栈),此时如果被抢占,发生

把握linux内核设计思想(十三):内存管理之进程地址空间

[版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet.文章仅供学习交流,请勿用于商业用途] 进程地址空间由进程可寻址的虚拟内存组成,Linux 的虚拟地址空间为0~4G字节(注:本节讲述均以32为为例).Linux内核将这 4G 字节的空间分为两部分.将最高的 1G 字节(从虚拟地址0xC0000000到0xFFFFFFFF).供内核使用,称为"内核空间". 而将较低的 3G 字节(从虚拟地址 0x00000000 到 0xBFFFFFFF),供各个进程使