处理大并发量订单处理的 KafKa部署总结

处理大并发量订单处理的 KafKa部署总结

今天要介绍的是消息中间件KafKa,应该说是一个很牛的中间件吧,背靠Apache 与很多有名的中间件搭配起来用效果更好哦 ,为什么不用RabbitMQ,因为公司需要它。

  网上已经有很多怎么用和用到哪的内容,但结果很多人都倒在了入门第一步 环境都搭不起来,可谓是从了解到放弃,所以在此特记录如何在linux环境搭建,windows中配置一样,只是启动运行bat文件。

  想要用它就先必须了解它能做什么及能做到什么程度,先看看它是什么吧。

  当今社会各种应用系统诸如商业、社交、搜索、浏览等像信息工厂一样不断的生产出各种信息,在大数据时代,我们面临如下几个挑战:
  如何收集这些巨大的信息
  如何分析它
  如何及时做到如上两点
  以上几个挑战形成了一个业务需求模型,即生产者生产(produce)各种信息,消费者消费(consume)(处理分析)这些信息,而在生产者与消费者之间,需要一个沟通两者的桥梁-消息系统。从一个微观层面来说,这种需求也可理解为不同的系统之间如何传递消息。

kafka 应用场景

日志收集:一个公司可以用Kafka可以收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。
消息系统:解耦和生产者和消费者、缓存消息等。
用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。
运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。
流式处理:比如spark streaming和storm
事件源

解耦 在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口。这允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
冗余有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。
扩展性 因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。扩展就像调大电力按钮一样简单。
灵活性 & 峰值处理能力 在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见;如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
可恢复性 系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
顺序保证 在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。Kafka能保证一个Partition内的消息的有序性。
缓冲 在任何重要的系统中,都会有需要不同的处理时间的元素。例如,加载一张图片比应用过滤器花费更少的时间。消息队列通过一个缓冲层来帮助任务最高效率的执行———写入队列的处理会尽可能的快速。该缓冲有助于控制和优化数据流经过系统的速度。
用于数据流 在一个分布式系统里,要得到一个关于用户操作会用多长时间及其原因的总体印象,是个巨大的挑战。消息系列通过消息被处理的频率,来方便的辅助确定那些表现不佳的处理过程或领域,这些地方的数据流都不够优化。
异步通信 很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

Kafka主要特点:
同时为发布和订阅提供高吞吐量。据了解,Kafka每秒可以生产约25万消息(50 MB),每秒处理55万消息(110 MB)。
可进行持久化操作。将消息持久化到磁盘,因此可用于批量消费,例如ETL,以及实时应用程序。通过将数据持久化到硬盘以及replication防止数据丢失。
分布式系统,易于向外扩展。所有的producer、broker和consumer都会有多个,均为分布式的。无需停机即可扩展机器。
消息被处理的状态是在consumer端维护,而不是由server端维护。当失败时能自动平衡。
支持online和offline的场景。

Kafka的架构:

Kafka 的整体架构非常简单,是显式分布式架构,producer、broker(kafka)和consumer都可以有多个。 Producer,consumer实现Kafka注册的接口,数据从producer发送到broker,broker承担一个中间缓存和分发的作用。 broker分发注册到系统中的consumer。broker的作用类似于缓存,即活跃的数据和离线处理系统之间的缓存。客户端和服务器端的通信,是基 于简单,高性能,且与编程语言无关的TCP协议。

  几个基本概念:

  • Topic:特指Kafka处理的消息源(feeds of messages)的不同分类。
  • Partition:Topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。partition中的每条消息都会被分配一个有序的id(offset)。
  • Message:消息,是通信的基本单位,每个producer可以向一个topic(主题)发布一些消息。
  • Producers:消息和数据生产者,向Kafka的一个topic发布消息的过程叫做producers。
  • Consumers:消息和数据消费者,订阅topics并处理其发布的消息的过程叫做consumers。
  • Broker:缓存代理,Kafa集群中的一台或多台服务器统称为broker。

  消息发送的流程:

  • Producer根据指定的partition方法(round-robin、hash等),将消息发布到指定topic的partition里面
  • kafka集群接收到Producer发过来的消息后,将其持久化到硬盘,并保留消息指定时长(可配置),而不关注消息是否被消费。
  • Consumer从kafka集群pull数据,并控制获取消息的offset

环境

  CentOS7.0

  kafka_2.11-0.10.1.0版本

  用root用户安装

Java环境,最好是最新版本的。

  安装Zookeeper

  分布式时多机间要确保能正常通讯,关闭防火墙或让涉及到的端口通过。

下载

  去官网下载 :http://kafka.apache.org/downloads.html 选择最新版本(在此下载编译好的包,不要下载src源码包)。

  下载后放进CentOS中的/usr/local/ 文件夹中,并解压到当前文件中 /usr/local/kafka212

安装配置

  由于Kafka集群需要依赖ZooKeeper集群来协同管理,所以需要事先搭建好ZK集群。

  安装之前先要启动zookeeper,如何安装可参考之前的 一步到位分布式开发Zookeeper实现集群管理 一文

   将压缩文件夹压到当前文件夹

tar -zxvf kafka_2.12-0.10.2.0.tgz,产生文件夹kafka_2.12-0.10.2.0 并更改名为kafka212 

  进入config目录,修改server.properties文件

  vi server.properties

broker.id=0  #当前机器在集群中的唯一标识,和zookeeper的myid性质一样

port=9092 #当前kafka对外提供服务的端口默认是9092

log.dirs=//usr/local/kafka212/kafka-logs

zookeeper.connect=192.168.80.32:2181,192.168.80.33:2181,192.168.80.30:2181

  注意:

  broker.id=0 值每台服务器上的都不一样

启动

首先启动独立的ZK集群,三台都要启动(./zkServer.sh start)

进入到kafka的bin目录,然后启动服务
./kafka-server-start.sh ../config/server.properties (三台服务器都要启动)

或启动daemon守护进程后台程序
进入到kafka的bin目录
./kafka-server-start.sh -daemon ../config/server.properties  

验证启动进程

jps

显示包含

25014 QuorumPeerMain

25778 Kafka

使用客户端进入zk

[[email protected] bin]# zkCli.sh -server 192.168.80.32:2181

  查看目录情况

[zk: 192.168.80.32:2181(CONNECTED) 0] ls /

  显示

  [controller_epoch, controller, brokers, zookeeper, test, admin, isr_change_notification, consumers, config]

创建一个topic:

[[email protected] bin]# ./kafka-topics.sh --create --zookeeper 192.168.80.32:2181,192.168.80.33:2181,192.168.80.30:2181 --replication-factor 3 --partitions 1 --topic hotnews

--replication-factor 2 #复制两份

--partitions 1 #创建1个分区

--topic #主题

查看topic状态:

[[email protected] bin]# ./kafka-topics.sh --describe --zookeeper 192.168.80.32:2181,192.168.80.33:2181,192.168.80.30:2181 --topic hotnews

发送消息:

[[email protected] bin]# ./kafka-console-producer.sh --broker-list 192.168.80.32:9092,192.168.80.33:9092,192.168.80.30:9092 --topic hotnews

接收消息:

[[email protected] bin]# ./kafka-console-consumer.sh --zookeeper 192.168.80.32:2181,192.168.80.33:2181,192.168.80.30:2181 --topic hotnews --from-beginning

NET-KafKa编程

  对于net来说需要相应的插件才能与之通讯,网上比较推荐的是 rdkafka-dotnet  有需要的可以git中下载demo。

扩展

  找到为0的leader的进程,并杀死

[[email protected] /]# ps -ef | grep kafka

kill -9 25285

  启动各服务器上的kafka后,有机器访问主机时出现:

WARN Fetching topic metadata with correlation id 5 for topics [Set(hotnews)] from broker [BrokerEndPoint(1,H33,9092)] failed (kafka.client.ClientUtils$)

  这里需要关闭机器的防火墙或将9092加入防火墙。

  Kafka在分布式设计中有着相当重要的作用,算是一个基础工具,因此需要不断的学习了解与实践,如何处理大并发订单这只是一种场景。

  这里留有一个问题:如何确定Kafka的分区数、key和consumer线程数

时间: 2024-10-10 18:10:34

处理大并发量订单处理的 KafKa部署总结的相关文章

我是如何处理大并发量订单处理的 KafKa部署总结

今天要介绍的是消息中间件KafKa,应该说是一个很牛的中间件吧,背靠Apache 与很多有名的中间件搭配起来用效果更好哦 ,为什么不用RabbitMQ,因为公司需要它. 网上已经有很多怎么用和用到哪的内容,但结果很多人都倒在了入门第一步 环境都搭不起来,可谓是从了解到放弃,所以在此特记录如何在linux环境搭建,windows中配置一样,只是启动运行bat文件. 想要用它就先必须了解它能做什么及能做到什么程度,先看看它是什么吧. 当今社会各种应用系统诸如商业.社交.搜索.浏览等像信息工厂一样不断

关于.NET大数据量大并发量的数据连接池管理

转自:http://www.cnblogs.com/virusswb/archive/2010/01/08/1642055.html 我以前对.NET连接池的认识是错误的,原来以为在web.config中设置了连接池,每次发起的数据库连接也还是会是新的,每个sql请求就是一个连接,需要打开和关闭.因此就想设计一个连接池,然后保持固定的连接数,需要数据库连接就从连接池中取出来一个给请求用,用完毕就设置连接空闲,等待下次请求.这样看来是多余的,ADO.NET已经为我们提供这样的连接池管理,每个连接字

大并发量socket 通信框架MINA介绍

Apache MINA(Multipurpose Infrastructure for Network Applications) 是 Apache 组织一个较新的项目,它为开发高性能和高可用性的网络应用程序提供了非常便利的框架.当前发行的 MINA 版本支持基于 Java NIO 技术的TCP/UDP 应用程序开发.串口通讯程序. Mina 的应用层: 一个设计成熟的开源框架,总是会仅可能的减少侵入性,并在整个项目中找到合适的位置,而不应对整个项目的构架设计产生过多的影响,图 1 就是 MIN

大数据量下高并发同步的讲解(转)

文章转自:http://blog.csdn.net/xcw931924821/article/details/52475742 *************************************************************************************************************************************************************************************** 对于

大数据量下高并发同步的讲解(不看,保证你后悔)

对于我们开发的网站,如果网站的访问量非常大的话,那么我们就需要考虑相关的并发访问问题了.而并发问题是绝大部分的程序员头疼的问题, 但话又说回来了,既然逃避不掉,那我们就坦然面对吧~今天就让我们一起来研究一下常见的并发和同步吧. 为了更好的理解并发和同步,我们需要先明白两个重要的概念:同步和异步    1.同步和异步的区别和联系          所谓同步,可以理解为在执行完一个函数或方法之后,一直等待系统返回值或消息,这时程序是出于阻塞的,只有接收到 返回的值或消息后才往下执行其它的命令. 异步

大数据量下高并发同步的讲解(不看,保证你后悔!)

偶然的机会在网上看到了这篇blog,觉得作者写得挺不错的(虽然自己并没有怎么看懂...),所以就转来跟大家分享分享吧~~~ 对于我们开发的网站,如果网站的访问量非常大的话,那么我们就需要考虑相关的并发访问问题了.而并发问题是绝大部分的程序员头疼的问题, 但话又说回来了,既然逃避不掉,那我们就坦然面对吧~今天就让我们一起来研究一下常见的并发和同步吧. 为了更好的理解并发和同步,我们需要先明白两个重要的概念:同步和异步    1.同步和异步的区别和联系          所谓同步,可以理解为在执行完

大并发大数据量请求的处理方法

大并发大数据量请求一般会分为几种情况: 1.大量的用户同时对系统的不同功能页面进行查找,更新操作 2.大量的用户同时对系统的同一个页面,同一个表的大数据量进行查询操作 3.大量的用户同时对系统的同一个页面,同一个表进行更新操作 对于第一种情况一般处理方法如下: 一.对服务器层面的处理 1. 调整IIS 7应用程序池队列长度 由原来的默认1000改为65535. IIS Manager > ApplicationPools > Advanced Settings Queue Length : 6

并发问题:大数据量的訪问

今天突然关注到这个问题,从网上看了非常多,受益良多.记录下来,以后回想~ 之前在工作中就遇到过这样的情况.两个用户同一时候操作一条记录,A用户查询某条记录,B用户把这条记录删除,A用户将查询的某条记录的某些值保存到其它的表里.这个bug也是困扰了好久,由于A用户的这种方法特别复杂,运行的时间比較长,所以这个问题出现的概率还非常高的呢.后来的解决方法是,A用户在最后保存前,再查一下这条记录.是从代码逻辑方面解决的这个问题,确实好了非常多,但始终认为是治标不治本. 今天看完以后认为有更好的解决方法的

并发问题:大数据量的访问

今天突然关注到这个问题,从网上看了很多,受益良多.记录下来,以后回顾~ 之前在工作中就遇到过这种情况,两个用户同时操作一条记录,A用户查询某条记录,B用户把这条记录删除,A用户将查询的某条记录的某些值保存到其他的表里.这个bug也是困扰了好久,因为A用户的这个方法特别复杂,执行的时间比较长,所以这个问题出现的概率还很高的呢.后来的解决方法是,A用户在最后保存前,再查一下这条记录.是从代码逻辑方面解决的这个问题,确实好了很多,但始终觉得是治标不治本.今天看完以后觉得有更好的解决方法的呢. part