【转载】0-1背包问题

0-1背包问题

0-1背包问题:

有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

这个问题的特点是:每种物品只有一件,可以选择放或者不放。

算法基本思想:

利用动态规划思想 ,子问题为:f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

其状态转移方程是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}    //这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

解释一下上面的方程:“将前i件物品放入容量为v的背包中”这个子问题,如果只考虑第i件物品放或者不放,那么就可以转化为只涉及前i-1件物品的问题,即1、如果不放第i件物品,则问题转化为“前i-1件物品放入容量为v的背包中”2如果放第i件物品,则问题转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”(此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i])。则f[i][v]的值就是1、2中最大的那个值。

(注意:f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。)

优化空间复杂度:

以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

上面f[i][v]使用二维数组存储的,可以优化为一维数组f[v],将主循环改为:

for i=1..N

for v=V..0

f[v]=max{f[v],f[v-c[i]]+w[i]};

即将第二层循环改为从V..0,逆序。

解释一下:

假设最大容量M=10,物品个数N=3,物品大小w{3,4,5},物品价值p{4,5,6}。

当进行第i次循环时,f[v]中保存的是上次循环产生的结果,即第i-1次循环的结果(i>=1)。所以f[v]=max{f[v],f[v-c[i]]+w[i]}这个式子中,等号右边的f[v]和f[v-c[i]]+w[i]都是前一次循环产生的值。

当i=1时,f[0..10]初始值都为0。所以

f[10]=max{f[10],f[10-c[1]]+w[1]}=max{0,f[7]+4}=max{0,0+4}=4;

f[9]=max{f[9],f[9-c[1]]+w[1]}=max{0,f[6]+4}=max{0,0+4}=4;

......

f[3]=max{f[3],f[3-c[1]]+w[1]}=max{0,f[3]+4}=max{0,0+4}=4;

f[2]=max{f[2],f[2-c[1]]+w[1]}=max{0,f[2-3]+4}=0;//数组越界?->容量V < c[1]无法添加,所以最大价值为0

f[1]=0;

f[0]=0;

当i=2时,此时f[0..10]经过上次循环后,都已经被重新赋值,即f[0..2]=0,f[3..10]=4。利用f[v]=max{f[v],f[v-c[i]]+w[i]}这个公式计算i=2时的f[0..10]的值。

当i=3时同理。

具体的值如下表所示:

因此,利用逆序循环就可以保证在计算f[v]时,公式f[v]=max{f[v],f[v-c[i]]+w[i]}中等号右边的f[v]和f[v-c[i]]+w[i]保存的是f[i-1][v]和f[i -1][v-c[i]]的值。

当i=N时,得到的f[V]即为要求的最优值。

初始化的细节问题:

在求最优解的背包问题中,一般有两种不同的问法:1、要求“恰好装满背包”时的最优解;2、求小于等于背包容量的最优解,即不一定恰好装满背包。

这两种问法,在初始化的时候是不同的。

1、要求“恰好装满背包”时的最优解:

在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。如果不能恰好满足背包容量,即不能得到f[V]的最优值,则此时f[V]=-∞,这样就能表示没有找到恰好满足背包容量的最优值。

2、求小于等于背包容量的最优解,即不一定恰好装满背包:

如果并没有要求必须把背包装满,而是只希望价值尽量大,初始化时应该将f[0..V]全部设为0。

总结

01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

0-1背包问题代码:

转载自:http://www.cnblogs.com/fly1988happy/archive/2011/12/13/2285377.html

时间: 2024-10-28 10:55:58

【转载】0-1背包问题的相关文章

背包问题:0/1背包问题 普通背包问题(贪心算法只适用于普通背包问题)

//sj和vj分别为第j项物品的体积和价值,W是总体积限制. //V[i,j]表示从前i项{u1,u2,…,un}中取出来的装入体积为j的背包的物品的最大价值. 第一种:0/1背包问题 最大化 ,受限于  1)若i=0或j=0,  V[i,j] = 0 2)若j<si, V[i,j] = V[i-1,j] 3)若i>0且j>=si, V[i,j] = Max{V[i-1,j],V[i-1,j-si]+vi} 第二种:背包问题:在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部

0/1背包问题(回溯法)

回溯法是一个既带有系统性又带有跳跃性的搜索算法.它在包含问题的所有解的解空间树中,按深度优先策略,从根结点出发搜索解空间树.算法搜索至解空间树的任意一结点时,先判断该结点是否包含问题的解.如果肯定不包含,则跳过对该结点为根的子树搜索,逐层向其祖先结点回溯:否则 ,进入该子树,继续按深度优先策略搜索. 问题的解空间 用回溯法解问题时,应明确定义问题的解空间.问题的解空间至少包含问题的一个(最优)解.对于 n=3 时的 0/1 背包问题,可用一棵完全二叉树表示解空间,如图所示: 求解步骤 1)针对所

0/1背包问题的动态规划法求解 —— Java 实现

0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进对动态规划法机制的理解和掌握. 值得提及的一个问题是,在用 JAVA 实现时, 是按算法模型建模,还是用对象模型建模呢? 如果用算法模型,那么 背包的值.重量就直接存入二个数组里:如果用对象模型,则要对背包以及背包问题进行对象建模.思来想去,还是采用了对象模型,尽管心里感觉算法模型似乎更好一些.有时确实就是这样,对象模型虽然现在很主流,但也不是万能的,采用

动态规划算法实现部分——0/1背包问题

代码: import java.util.*; import java.util.Scanner; /* *动态规划思想解决0/1背包问题 */ public class Main{ public static void main(String[] args){ Scanner in=new Scanner(System.in); System.out.println("输入背包的容量"); int bagCap=in.nextInt(); //背包的容量 System.out.pri

动态规划算法求解0,1背包问题

首先我们来看看动态规划的四个步骤: 1. 找出最优解的性质,并且刻画其结构特性: 2. 递归的定义最优解: 3. 以自底向上的方式刻画最优值: 4. 根据计算最优值时候得到的信息,构造最优解 其中改进的动态规划算法:备忘录法,是以自顶向下的方式刻画最优值,对于动态规划方法和备忘录方法,两者的使用情况如下: 一般来讲,当一个问题的所有子问题都至少要解一次时,使用动态规划算法比使用备忘录方法好.此时,动态规划算法没有任何多余的计算.同时,对于许多问题,常常可以利用其规则的表格存取方式,减少动态规划算

动态规划0—1背包问题

动态规划0-1背包问题 ? 问题描写叙述: 给定n种物品和一背包.物品i的重量是wi,其价值为vi,背包的容量为C.问应怎样选择装入背包的物品,使得装 入背包中物品的总价值最大? ? 对于一种物品,要么装入背包,要么不装.所以对于一种物品的装入状态能够取0和1.我们设物品i的装入状态为xi,xi∈ (0,1),此问题称为0-11背包问题. 过程分析 数据:物品个数n=5,物品重量w[n]={0,2,2,6,5,4},物品价值V[n]={0,6,3,5,4,6}, (第0位,置为0,不參与计算,仅

【算法设计与分析】7、0/1背包问题,动态规划

/** * 书本:<算法分析与设计> * 功能:给定n种物品和一个背包,物品i的重量是Wi, 其价值为Vi,问如何选择装入背包的物品,使得装入背包的物品的总价值最大? * 文件:beiBao.cpp * 时间:2014年11月30日19:22:47 * 作者:cutter_point */ #include <iostream> #define SIZEBEIBAO 20 using namespace std; //这个背包问题的最优的子结构是 /* 首先这里一共有m种物品,背包

第十六章 贪心算法——0/1背包问题

1.问题描述: 给定n种物品和一背包.物品i的重量是wi,其价值为vi,背包的容量为C.问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题. 2.最优性原理: 设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解:

动态规划--0,1背包问题(再也不怕类似背包问题了)

这种类型问题三大要素:总重量.每件物品重量.每件物品价值,问最终能够塞进背包中的价值最大是多少?应该怎么选择物品? 当然也不一定是这些,例如上节所说的矿工挖矿:总人数.挖每座矿的人数.每座矿的金子数. 也就是说,只要出现了这三大要素,都可以视为0,1背包问题(物品不可拆分) 动态规划三要素:边界.最优子结构.状态转移方程. 我们一步步进行解析: 初始化:物品总重量:c=8,物品类别:n=['a','b','c','d'],物品重量:w=[2,4,5,3],物品价值:v=[5,4,6,2] 假设我