在上一节我们分析了TaskTracker如何对JobTracker分配过来的任务进行初始化,并创建各类JVM启动所需的信息,最终创建JVM的整个过程,本节我们继续来看,JVM启动后,执行的是Child类中的Main方法,这个方法是如何执行的。
1,从命令参数中解析相应参数,获取JVMID、建立RPC连接、启动日志线程等初始化操作:
父进程(即TaskTracker)在启动子进程时,会加入一些参数,如本机的IP、端口、TaskAttemptID等等,通过解析可以得到JVMID。
String host = args[0]; int port = Integer.parseInt(args[1]); final InetSocketAddress address = NetUtils.makeSocketAddr(host, port); final TaskAttemptID firstTaskid = TaskAttemptID.forName(args[2]); final String logLocation = args[3]; final int SLEEP_LONGER_COUNT = 5; int jvmIdInt = Integer.parseInt(args[4]); JVMId jvmId = new JVMId(firstTaskid.getJobID(),firstTaskid.isMap(),jvmIdInt);
另外,获取证书,与父进程建立RPC连接,此处使用的RPC接口就是上节分析过的TaskUmbilicalProtocol(TaskTracker实现了这个接口):
final TaskUmbilicalProtocol umbilical = taskOwner.doAs(new PrivilegedExceptionAction<TaskUmbilicalProtocol>() { @Override public TaskUmbilicalProtocol run() throws Exception { return (TaskUmbilicalProtocol)RPC.getProxy(TaskUmbilicalProtocol.class, TaskUmbilicalProtocol.versionID, address, defaultConf); } });
RPC是Hadoop里面的类,用于实现远程过程调用,前面我们已经分析过了,其RPC机制是通过JAVA中的动态代理 java.lang.reflect.InvocationHandler和java.lang.reflect.Proxy实现的,当客户端调用TaskUmbilicalProtocol的某个方法时,将转入实现了接口InvocationHandler的invoke方法,执行下面的代码:
ObjectWritable value = (ObjectWritable) client.call(new Invocation(method, args), remoteId);
client是org.apache.hadoop.ipc.Client类,其call方法调用以下代码将RPC所需参数传递至服务端:
Connection connection = getConnection(remoteId, call); connection.sendParam(call); // send the parameter
参数打包操作在sendParam方法中实现。
这里,Child子进程利用这一原理与TaskTracker父进程建立RPC关系,他们之间的调用接口即TaskUmbilicalProtocol中声明的方法。
之后,Child子进程会为JVM建立一个钩子:
Runtime.getRuntime().addShutdownHook(new Thread() { public void run() { try { if (taskid != null) { TaskLog.syncLogs(logLocation, taskid, isCleanup, currentJobSegmented); } } catch (Throwable throwable) { } } });
钩子的意义在于当JVM关闭了,会执行钩子对象中定义的方法,即上面的run方法,只有执行完了这些方法后,JVM才会真正关闭。从代码可以看出,主要是写日志。
除了钩子中会写日志外,Child子进程会创建一个专门写日志的线程。每过5秒会同步日志一次:
Thread t = new Thread() { public void run() { //every so often wake up and syncLogs so that we can track //logs of the currently running task while (true) { try { Thread.sleep(5000); if (taskid != null) { TaskLog.syncLogs(logLocation, taskid, isCleanup, currentJobSegmented); } } catch (InterruptedException ie) { } catch (IOException iee) { LOG.error("Error in syncLogs: " + iee); System.exit(-1); } } } }; t.setName("Thread for syncLogs"); t.setDaemon(true); t.start();
之后,获得JVM的进程ID,获得进程ID的代码:
String pid = ""; if (!Shell.WINDOWS) { pid = System.getenv().get("JVM_PID"); }
判断是否是Windows操作系统的代码:
/** Set to true on Windows platforms */ public static final boolean WINDOWS /* borrowed from Path.WINDOWS */ = System.getProperty("os.name").startsWith("Windows");
根据获得的PID,创建JvmContext对象,该对象实际上主要记录的就是进程ID和JVMID。
2,在短暂的初始化过程之后,接下来就是一个死循环。在死循环之外,是一个异常处理代码,主要结构为:
try { while (true) { 。。。。。。。。 }catch (FSError e) { LOG.fatal("FSError from child", e); umbilical.fsError(taskid, e.getMessage(), jvmContext); } catch (Throwable throwable) { 。。。。。。。。。 umbilical.fatalError(taskid, cause, jvmContext); } } finally { RPC.stopProxy(umbilical); shutdownMetrics(); // Shutting down log4j of the child-vm... // This assumes that on return from Task.run() // there is no more logging done. LogManager.shutdown(); }
即出现了异常后,利用RPC机制向TaskTracker汇报,最终停止RPC代理,并关闭日志管理。到这里,整个Main方法也结束。因此,Child子进程的主要功能就在死循环中。我们接下来对循环中的代码进行分析。
3,首先执行的是获取JvmTask:
JvmTask myTask = umbilical.getTask(context);
umbilical是代理接口,向TaskTracker请求任务。他们之间传递的只有context对象,前面提过,该对象只包含进程ID和JVMID两个参数。
父进程首先对其进行鉴权,并记录其进程ID:
authorizeJVM(context.jvmId.getJobId());jvmManager.setPidToJvm(jvmId, context.pid);
之后,查看JVM传递过来的Job ID对应的任务是否处于运行当中,RunningJob在上一节分析过,在初始化过程中创建出来的:
RunningJob rjob = runningJobs.get(jvmId.getJobId());
如果该Job ID对应的任务没有处于运行中,可能是因为超期的Job等等,该Job实际上早已结束,总之出现了异常,试图关闭JVM,返回空的任务。
如果正处于运行中,则获取对应的任务对象:
TaskInProgress tip = jvmManager.getTaskForJvm(jvmId); public TaskInProgress getTaskForJvm(JVMId jvmId) throws IOException { if (jvmId.isMapJVM()) { return mapJvmManager.getTaskForJvm(jvmId); } else { return reduceJvmManager.getTaskForJvm(jvmId); } }
mapJvmManager、reduceJvmManager都是JvmManagerForType对象,其getTaskForJvm方法为:
synchronized public TaskInProgress getTaskForJvm(JVMId jvmId) throws IOException { if (jvmToRunningTask.containsKey(jvmId)) { //Incase of JVM reuse, tasks are returned to previously launched //JVM via this method. However when a new task is launched //the task being returned has to be initialized. TaskRunner taskRunner = jvmToRunningTask.get(jvmId); JvmRunner jvmRunner = jvmIdToRunner.get(jvmId); Task task = taskRunner.getTaskInProgress().getTask(); jvmRunner.taskGiven(task); return taskRunner.getTaskInProgress(); } return null; }
可见,从jvmToRunningTask(Map <JVMId,TaskRunner>对象)中取出对应的TaskRunner、JvmRunner、Task。
检测Map<TaskAttemptID, TaskInProgress> tasks中是否包含该任务(有可能已经执行完了),如果存在,则构造一个JvmTask对象返回,该对象主要封装了MapTask或ReduceTask对象。
4,获取MapReduce运行的目录信息:
// setup the child‘s mapred-local-dir. The child is now sandboxed and // can only see files down and under attemtdir only. TaskRunner.setupChildMapredLocalDirs(task, job); // setup the child‘s attempt directories localizeTask(task, job, logLocation); //setupWorkDir actually sets up the symlinks for the distributed //cache. After a task exits we wipe the workdir clean, and hence //the symlinks have to be rebuilt. TaskRunner.setupWorkDir(job, new File(cwd)); //create the index file so that the log files //are viewable immediately TaskLog.syncLogs (logLocation, taskid, isCleanup, logIsSegmented(job));
在setupChildMapredLocalDirs中,获取"mapred.local.dir"本地目录;
static void setupChildMapredLocalDirs(Task t, JobConf conf) { String[] localDirs = conf.getStrings(JobConf.MAPRED_LOCAL_DIR_PROPERTY); String jobId = t.getJobID().toString(); String taskId = t.getTaskID().toString(); boolean isCleanup = t.isTaskCleanupTask(); String user = t.getUser(); StringBuffer childMapredLocalDir = new StringBuffer(localDirs[0] + Path.SEPARATOR + TaskTracker.getLocalTaskDir(user, jobId, taskId, isCleanup)); for (int i = 1; i < localDirs.length; i++) { childMapredLocalDir.append("," + localDirs[i] + Path.SEPARATOR + TaskTracker.getLocalTaskDir(user, jobId, taskId, isCleanup)); } LOG.debug("mapred.local.dir for child : " + childMapredLocalDir); conf.set("mapred.local.dir", childMapredLocalDir.toString()); }
该目录即childMapredLocalDir,是根据本地目录JobConf.MAPRED_LOCAL_DIR_PROPERTY,加上jobid、TaskID等等组成的。
localizeTask将Job配置信息写成本地XML文件。
TaskRunner.setupWorkDir创建了Child子进程工作的临时目录。
之后,获取每个JVM可以运行的任务数量,默认是1:
numTasksToExecute = job.getNumTasksToExecutePerJvm(); /** * Get the number of tasks that a spawned JVM should execute */ public int getNumTasksToExecutePerJvm() { return getInt("mapred.job.reuse.jvm.num.tasks", 1); }
这个参数与上一节分析的JVM重用机制直接相关。比如一个Job需要10个Map任务,那么如果设定为1,则需要启动10个JVM。如果任务运行时间比较短,那么每次都要启动JVM,开销较大,因此可以将这个值修改为更大的值,比如如果为3,那么,可以允许同一个Job的任务顺序执行3次。这并不是指任务可以同时运行,而是顺序运行。如果修改为-1,则可以无限制的顺序运行,当然,前提是这些任务必须是一个Job内的任务。上一节在判断是否创建新JVM的时候曾经分析过类似的问题,在JvmRunner这个类中有两个变量numTasksRan和numTasksToRun,前一个变量表示已经顺序执行了几个任务,后一个变量表示最多可以顺序执行几个任务,numTasksToRun的值就决定于this.numTasksToRun = env.conf.getNumTasksToExecutePerJvm()。
因此,上一节在分析是否可以新创建JVM的时候曾经遇到过下面的代码:
if (jId.equals(jobId) && !jvmRunner.isBusy() && !jvmRunner.ranAll()){ setRunningTaskForJvm(jvmRunner.jvmId, t); //reserve the JVM LOG.info("No new JVM spawned for jobId/taskid: " + jobId+"/"+t.getTask().getTaskID() + ". Attempting to reuse: " + jvmRunner.jvmId); return; }
即属于同一个Job的任务,如果JVMRunner处于空闲状态,并且利用ranAll方法判断是否已经到达最大重用次数,如果还没有到达,则可以进行重用,而不用新启动JVM。
之后,创建管理相关的测量信息:
// Initiate Java VM metrics initMetrics(prefix, jvmId.toString(), job.getSessionId());
5,执行用户实现的相关代码。
主要涉及到下面的代码:
// use job-specified working directory FileSystem.get(job).setWorkingDirectory(job.getWorkingDirectory()); taskFinal.run(job, umbilical); // run the task
首先设置其工作目录,之后调用Task的run方法执行任务。Task有MapTask和ReduceTask两类。
以MapTask为例,在run方法中,首先会启动一个向父进程报告的线程:
// start thread that will handle communication with parent TaskReporter reporter = new TaskReporter(getProgress(), umbilical, jvmContext); reporter.startCommunicationThread();
通过startCommunicationThread方法,进一步执行TaskReporter的run方法。
在该方法中,会向父进程报告进展,或者以ping的形式保持心跳,statusUpdate是一个RPC方法:
if (sendProgress) { // we need to send progress update updateCounters(); taskStatus.statusUpdate(taskProgress.get(), taskProgress.toString(), counters); taskFound = umbilical.statusUpdate(taskId, taskStatus, jvmContext); taskStatus.clearStatus(); } else { // send ping taskFound = umbilical.ping(taskId, jvmContext); }
接下来,判断是否使用MapReduce新的API:
boolean useNewApi = job.getUseNewMapper(); /** * Should the framework use the new context-object code for running * the mapper? * @return true, if the new api should be used */ public boolean getUseNewMapper() { return getBoolean("mapred.mapper.new-api", false); }
Hadoop目前提供了两套API,这个标志用于判断是否使用新API,默认不使用。
旧的一套API位于org.apache.hadoop.mapred中,主要用接口实现:
public interface Mapper<K1, V1, K2, V2> extends JobConfigurable, Closeable { void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter) throws IOException; 。。。 public interface Reducer<K2, V2, K3, V3> extends JobConfigurable, Closeable { void reduce(K2 key, Iterator<V2> values, OutputCollector<K3, V3> output, Reporter reporter) throws IOException; 。。。。。。。
另外一套API位于org.apache.hadoop.mapreduce中,用类实现:
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { protected void map(KEYIN key, VALUEIN value, Context context) throws IOException, InterruptedException { context.write((KEYOUT) key, (VALUEOUT) value); } 。。。。 public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT> { protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context ) throws IOException, InterruptedException { for(VALUEIN value: values) { context.write((KEYOUT) key, (VALUEOUT) value); } } 。。。。。。。。
用户如果使用第一套API,那么就相当于实现Mapper和Reducer这两个接口中的map和reduce方法。如果使用第二套API,那么就可以继承这两个类,其方法也可以继承。应该说是一种改进。因为第二种方法里面将map、cleanup这些方法用Context这种概念串起来,其中Context存在两种:
public class MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> extends TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> { private RecordReader<KEYIN,VALUEIN> reader; private InputSplit split; 。。。。。。 public class ReduceContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> 。。。。
比如,MapContext包含了OutputCollector和Reporter的功能,并且还容易扩展,这样的话扩展性更好。不过,其KV处理的基本思想仍然保持一致。
之后进入Task的initialize(job, getJobID(), reporter, useNewApi)方法。用于设置任务运行状态和输出目录等。并创建输出类:
committer = conf.getOutputCommitter(); public OutputCommitter getOutputCommitter() { return (OutputCommitter)ReflectionUtils.newInstance( getClass("mapred.output.committer.class", FileOutputCommitter.class, OutputCommitter.class), this); }
接着判断是否是特殊的任务,主要有Job清理任务、创建任务等。
// check if it is a cleanupJobTask if (jobCleanup) { runJobCleanupTask(umbilical, reporter); return; } if (jobSetup) { runJobSetupTask(umbilical, reporter); return; } if (taskCleanup) { runTaskCleanupTask(umbilical, reporter); return; }
如果不是,则是MapTask或ReduceTask,假如是MapTask,则执行:
if (useNewApi) { runNewMapper(job, splitMetaInfo, umbilical, reporter); } else { runOldMapper(job, splitMetaInfo, umbilical, reporter); }
根据不同的API调用不同的方法。此处假定仍然使用默认的旧API。其方法声明为:
private <INKEY,INVALUE,OUTKEY,OUTVALUE> void runOldMapper(final JobConf job, final TaskSplitIndex splitIndex, final TaskUmbilicalProtocol umbilical, TaskReporter reporter )
6,首先调用getSplitDetails方法获得Split信息:
InputSplit inputSplit = getSplitDetails(new Path(splitIndex.getSplitLocation()), splitIndex.getStartOffset());
SplitIndex即传进来的参数,表示描述Split的信息,调用getSplitLocation获得其位置(即文件路径)以及在文件中的偏移(从文件起始位置的字节偏移量,是long型整数)。
首先获得该文件,移动偏移量:
FileSystem fs = file.getFileSystem(conf); FSDataInputStream inFile = fs.open(file); inFile.seek(offset); String className = Text.readString(inFile);
Split的类名即className,利用反射原理,创建这个类:
Class<T> cls; try { cls = (Class<T>) conf.getClassByName(className); } catch (ClassNotFoundException ce) { 。。。。。 } SerializationFactory factory = new SerializationFactory(conf); Deserializer<T> deserializer = (Deserializer<T>) factory.getDeserializer(cls); deserializer.open(inFile); T split = deserializer.deserialize(null);
即获得类相关信息后,利用反序列化得到InputSplit对象,InputSplit本身是一个接口,FileSplit等等是其实现,在JobClient提交任务的时候,通过将FileSplit进行序列化存入split文件,在此处进行反序列化,则可以获得一样的FileSplit对象。获得该对象之后,则得到了输入文件、Split块的偏移位置、长度等信息,写入配置信息:
private void updateJobWithSplit(final JobConf job, InputSplit inputSplit) { if (inputSplit instanceof FileSplit) { FileSplit fileSplit = (FileSplit) inputSplit; job.set("map.input.file", fileSplit.getPath().toString()); job.setLong("map.input.start", fileSplit.getStart()); job.setLong("map.input.length", fileSplit.getLength()); } LOG.info("Processing split: " + inputSplit); }
这样,就获得了该任务的Split对象。
7,创建记录读取类:
RecordReader<INKEY,INVALUE> in = isSkipping() ? new SkippingRecordReader<INKEY,INVALUE>(inputSplit, umbilical, reporter) : new TrackedRecordReader<INKEY,INVALUE>(inputSplit, job, reporter); job.setBoolean("mapred.skip.on", isSkipping());
有两类,表示是否跳过失败记录,前面已经分析过,如果已经在同一个地方失败两次,则应该跳过。假如不跳过的话,则进入TrackedRecordReader的构造方法,TrackedRecordReader封装了用户自己编写的记录读取类,用变量RecordReader<K,V> rawIn表示,在构造方法中,如何获得rawIn是最核心的部分。其中有代码:
rawIn = job.getInputFormat().getRecordReader(split, job, reporter);
getInputFormat方法将创建输入数据的格式描述类:
/** * Get the {@link InputFormat} implementation for the map-reduce job, * defaults to {@link TextInputFormat} if not specified explicity. * * @return the {@link InputFormat} implementation for the map-reduce job. */ public InputFormat getInputFormat() { return ReflectionUtils.newInstance(getClass("mapred.input.format.class", TextInputFormat.class, InputFormat.class), this); }
可见,也是采用反射的方法创建的。默认是TextInputFormat。获得该格式对象后,调用其getRecordReader方法即可得到相应的记录读取对象。用户如果要自定义实现某种格式,则需要继承InputFormat,并且实现getRecordReader方法,自然,也必须实现一个RecordReader<K,V>类,该记录对输入数据进行读取,每次输出一个Key和Value对。Hadoop里默认已经有不少格式类和对应的读取类,比如以换行作为分隔符的文本格式和读取类;输入数据来自数据库中的表的读取类等等。
public interface InputFormat<K, V> { InputSplit[] getSplits(JobConf job, int numSplits) throws IOException; RecordReader<K, V> getRecordReader(InputSplit split, JobConf job, Reporter reporter) throws IOException; }
总之,通过对配置文件进行解析,使用反射的方法,创建了相应的读取类,此时输入数据已经创建,读取类也创建,剩下的就是创建Map类等等。
8,创建MapOutputCollector对象。
Map输出可能有两种,当一个作业没有Reduce任务的时候,Map的输出数据可以直接写到HDFS为最终结果,否则应该写到本地文件,等着Reduce来取。有以下代码:
int numReduceTasks = conf.getNumReduceTasks(); LOG.info("numReduceTasks: " + numReduceTasks); MapOutputCollector collector = null; if (numReduceTasks > 0) { collector = new MapOutputBuffer(umbilical, job, reporter); } else { collector = new DirectMapOutputCollector(umbilical, job, reporter); }
即判断numReduceTasks是否等于0,如果为0,则创建DirectMapOutputCollector对象,否则创建MapOutputBuffer对象。
MapOutputBuffer是一个较为复杂的类,且与MapReduce性能关系较大,留作下一节深入分析,本节暂不涉及其细节,主要从流程上进行整体分析。
9,创建MapRunnable对象。
MapRunnable是一个接口,内部包含一个run方法:
public interface MapRunnable<K1, V1, K2, V2> void run(RecordReader<K1, V1> input, OutputCollector<K2, V2> output, Reporter reporter) throws IOException; }
首先该接口的类主要是MapRunner,该类中包含一个对象:
private Mapper<K1, V1, K2, V2> mapper;
该对象即Mapper接口,用户实现的Mapper类将通过configure方法构造出来,同样也是通过反射的方法:
public void configure(JobConf job) { this.mapper = ReflectionUtils.newInstance(job.getMapperClass(), job); //increment processed counter only if skipping feature is enabled this.incrProcCount = SkipBadRecords.getMapperMaxSkipRecords(job)>0 && SkipBadRecords.getAutoIncrMapperProcCount(job); }
10,执行MapRunnable的run方法:
try { runner.run(in, new OldOutputCollector(collector, conf), reporter); collector.flush(); in.close(); in = null; collector.close(); collector = null; } finally { closeQuietly(in); closeQuietly(collector); }
可以看出,Map任务最终即通过执行run方法达到目的,进入run方法中:
public void run(RecordReader<K1, V1> input, OutputCollector<K2, V2> output, Reporter reporter) throws IOException { try { // allocate key & value instances that are re-used for all entries K1 key = input.createKey(); V1 value = input.createValue(); while (input.next(key, value)) { // map pair to output mapper.map(key, value, output, reporter); if(incrProcCount) { reporter.incrCounter(SkipBadRecords.COUNTER_GROUP, SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS, 1); } } } finally { mapper.close(); } }
通过调用记录读取类逐一读取记录,得到K1、V1,即map的输入;然后调用Mapper实现类的map方法,执行用户编写的Map方法,并计数。这种map方法将一直对每一个记录进行循环读取和处理,直到记录读取类无法读到记录为止。到此为止,Map的调用流程基本清楚了。
11,看完了Map的主要执行过程后,再来看Reduce的执行过程。
同样,ReduceTask的run方法是第一步。同样有判断新旧API的代码。假定使用旧API。
首先获取解码器,因为Map的输出结果可能会被压缩(减小Shuffle压力),因此这里利用反射方法进行判断:
private CompressionCodec initCodec() { // check if map-outputs are to be compressed if (conf.getCompressMapOutput()) { Class<? extends CompressionCodec> codecClass = conf.getMapOutputCompressorClass(DefaultCodec.class); return ReflectionUtils.newInstance(codecClass, conf); } return null; }
接着判断是否是本地模式,即JobTracker也与Reduce位于同一服务器,如果不是本地,需要创建一个ReduceCopier对象,到远端去获取Map的输出:
boolean isLocal = "local".equals(job.get("mapred.job.tracker", "local")); if (!isLocal) { reduceCopier = new ReduceCopier(umbilical, job, reporter); if (!reduceCopier.fetchOutputs()) { if(reduceCopier.mergeThrowable instanceof FSError) { throw (FSError)reduceCopier.mergeThrowable; } throw new IOException("Task: " + getTaskID() + " - The reduce copier failed", reduceCopier.mergeThrowable); } }
关于ReduceCopier如何从远端获取到Map的输出,我们留作后面分析。上面的代码结束后,拷贝过程结束了,接下来进行排序。
针对本地或分布式,采用不同的方法:
final FileSystem rfs = FileSystem.getLocal(job).getRaw(); RawKeyValueIterator rIter = isLocal ? Merger.merge(job, rfs, job.getMapOutputKeyClass(), job.getMapOutputValueClass(), codec, getMapFiles(rfs, true), !conf.getKeepFailedTaskFiles(), job.getInt("io.sort.factor", 100), new Path(getTaskID().toString()), job.getOutputKeyComparator(), reporter, spilledRecordsCounter, null) : reduceCopier.createKVIterator(job, rfs, reporter);
如果是本地,采用Merger.merge方法,否则采用reduceCopier.createKVIterator方法,后面这个方法最终也是调用了Merger的方法,Merger内部较为复杂,与MapOutputBuffer、ReduceCopier一样,我们留作以后分析,这几个类涉及到Map的输出的处理(缓存写本地文件)、Reduce的输入的处理(拷贝、归并)。实际上,Map和Reduce由用户实现,实现较为简单,但其输出、输入的处理较为复杂。
12,排序完毕,接下来进入Reduce阶段。
首先获得Map的输出key,value的类信息:
Class keyClass = job.getMapOutputKeyClass(); Class valueClass = job.getMapOutputValueClass(); RawComparator comparator = job.getOutputValueGroupingComparator(); if (useNewApi) { runNewReducer(job, umbilical, reporter, rIter, comparator, keyClass, valueClass); } else { runOldReducer(job, umbilical, reporter, rIter, comparator, keyClass, valueClass); }
假定使用旧API,进入runOldReducer方法。
首先直接创建Reducer的实现类,即用户编写的类,与Mapper不同(使用MapRunner类封装用户编写的Mapper类)。
Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE> reducer = ReflectionUtils.newInstance(job.getReducerClass(), job);
获取Reduce输出文件名:
String finalName = getOutputName(getPartition()); static synchronized String getOutputName(int partition) { return "part-" + NUMBER_FORMAT.format(partition); }
不同的Reduce对应于不同的partition,输出文件名加上分区号。
13,创建输出记录写入类:
RecordWriter<OUTKEY, OUTVALUE> out = new OldTrackingRecordWriter<OUTKEY, OUTVALUE>( reduceOutputCounter, job, reporter, finalName); final RecordWriter<OUTKEY, OUTVALUE> finalOut = out;
在OldTrackingRecordWriter类中,封装了一个真正的记录写入类RecordWriter<K, V> real。其创建方法和记录读取类类似:
this.real = job.getOutputFormat().getRecordWriter(fs, job, finalName, reporter); public OutputFormat getOutputFormat() { return ReflectionUtils.newInstance(getClass("mapred.output.format.class", TextOutputFormat.class, OutputFormat.class), this); }
默认为TextOutputFormat。
在此基础上,创建输出对象:
OutputCollector<OUTKEY,OUTVALUE> collector = new OutputCollector<OUTKEY,OUTVALUE>() { public void collect(OUTKEY key, OUTVALUE value) throws IOException { finalOut.write(key, value); // indicate that progress update needs to be sent reporter.progress(); } };
该对象即对key,value进行逐一写入。
14,创建读取记录迭代器
首先创建读取Reduce输入记录值的对象:
ReduceValuesIterator<INKEY,INVALUE> values = isSkipping() ? new SkippingReduceValuesIterator<INKEY,INVALUE>(rIter, comparator, keyClass, valueClass, job, reporter, umbilical) : new ReduceValuesIterator<INKEY,INVALUE>(rIter, job.getOutputValueGroupingComparator(), keyClass, valueClass, job, reporter);
注意,这里涉及几个迭代器:
RawKeyValueIterator用于对Map的输出中的KV进行迭代,适用于本地文件。从源代码的解释来看,其含义是:RawKeyValueIterator is an iterator used to iterate over the raw keys and values during sort/merge of intermediate data,即在Sort和归并中间数据的时候使用的迭代器。
ReduceValuesIterator也是一个迭代器,适用于对合并后的Reduce的值进行迭代。这两个迭代器有什么区别?
从代码来看,ReduceValuesIterator继承于ValuesIterator(CombineValuesIterator也继承于此类),ValuesIterator内部本身就有一个RawKeyValueIterator in,在读取下一个Key和Value的时候,其实现为:
private void readNextKey() throws IOException { more = in.next(); if (more) { DataInputBuffer nextKeyBytes = in.getKey(); keyIn.reset(nextKeyBytes.getData(), nextKeyBytes.getPosition(), nextKeyBytes.getLength() - nextKeyBytes.getPosition()); nextKey = keyDeserializer.deserialize(nextKey); hasNext = key != null && (comparator.compare(key, nextKey) == 0); } else { hasNext = false; } } private void readNextValue() throws IOException { DataInputBuffer nextValueBytes = in.getValue(); valueIn.reset(nextValueBytes.getData(), nextValueBytes.getPosition(), nextValueBytes.getLength() - nextValueBytes.getPosition()); value = valDeserializer.deserialize(value); }
可以看出,RawKeyValueIterator是在字节这个层次工作,其排序、归并过程本身不关心字节代表什么含义,完全是一种字节层面的排序和归并。而要真正进行Reduce计算的时候,这个时候需要按照其实际格式进行解析,比如解析为ASCII字符串还是Unicode字符串等等,因此,ValuesIterator里面才需要有两个反序列化的对象:
private Deserializer<KEY> keyDeserializer; private Deserializer<VALUE> valDeserializer; private DataInputBuffer keyIn = new DataInputBuffer(); private DataInputBuffer valueIn = new DataInputBuffer();
从其构造方法来看,这两个序列化对象实际上正是用户配置的Reduce的输入KV类:
this.keyDeserializer = serializationFactory.getDeserializer(keyClass); this.keyDeserializer.open(keyIn); this.valDeserializer = serializationFactory.getDeserializer(valClass); this.valDeserializer.open(this.valueIn);
其中的keyClass、valClass上面分析过,即:
Class keyClass = job.getMapOutputKeyClass(); Class valueClass = job.getMapOutputValueClass(); RawComparator comparator = job.getOutputValueGroupingComparator();
即"mapred.mapoutput.key.class"和"mapred.mapoutput.value.class"指定的类。比较来自于"mapred.output.value.groupfn.class"指定的类。
注意,创建这些类之前实际上已经完成了归并排序工作,这说明Reduce之前的排序工作并不需要知道是什么格式的KV,完全按照字节进行。
15,循环调用reduce方法,执行reduce功能:
while (values.more()) { reduceInputKeyCounter.increment(1); reducer.reduce(values.getKey(), values, collector, reporter); if(incrProcCount) { reporter.incrCounter(SkipBadRecords.COUNTER_GROUP, SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS, 1); } values.nextKey(); values.informReduceProgress(); }
其中values就是前面创建的ReduceValuesIterator。逐一取出其中的key和values,执行reduce方法,我们回顾一下reduce方法的定义就明白ReduceValuesIterator的重要性:
void reduce(K2 key, Iterator<V2> values,OutputCollector<K3, V3> output, Reporter reporter) throws IOException;
以上分析了Child子进程的处理流程,主要包含了与TaskTracker进程建立RPC通道,读取Split信息,通过反序列化创建Split对象,以及记录读取对象,对输入数据进行逐一调用用户编写的map方法的过程,另外,关于Reduce任务,分析了创建MapOutputCollector对象、ReduceCopier对象、Merger对象,以及反序列化创建Reduce输入数据的记录读取对象、结果输出对象等等。大体上,这就是MapReduce粗略的执行过程。目前还有几个关键的类没有分析,这几个类对MapReduce的性能有较大影响,主要有:
MapOutputBuffer,该类包含了如何缓存Map输出,以及对Map输出进行KV序列化、压缩、Combiner、写本地文件等复杂操作;
ReduceCopier,该类包含了如何从远端Map任务所在机器去取数据的功能,即实现Shuffle;
Merger,该类包含了如何对Reduce的输入数据进行归并排序的功能。关于这几个类的详细分析留作后面各节。